一、教材分析人教實驗版高中思想政治必修4第二單元第六課的第二框題。本框題所在單元的核心問題是如何看待我們周圍的世界,該問題也是《生活與哲學(xué)》整本書的核心問題之一。而對這一問題的解決,單元中最終是由“在實踐中追求和發(fā)展真理”來實現(xiàn)的。 本框題是所在單元的歸宿,是對物質(zhì)與意識、實踐與認識關(guān)系的整體呈現(xiàn)與深華,是如何正確看到我們周圍世界問題在世界觀上的升華,是單元的最基本的知識目標之一。 二、教學(xué)目標(一)知識目標:識記真理的含義;理解真理最基本屬性是客觀性、真理是有條件的、具體的,認識具有反復(fù)性、無限性,在實踐中認識、發(fā)現(xiàn)、檢驗、發(fā)展真理;分析“追求 真理是一個過程”。(二)能力目標:提高比較分析的能力和明辨是非的能力,培養(yǎng)學(xué)生具體問題具體分析的能力及用發(fā)展觀點看問題的能力。(三)情感、態(tài)度與價值觀目標:學(xué)會在現(xiàn)實生活中正確區(qū)分真理和謬誤,正確對待人生道路上面臨的挫折和困難,樹立在實踐中不斷認識、豐富、發(fā)展真理的思想。
一.學(xué)生情況分析對于三角形的內(nèi)角和定理,學(xué)生在小學(xué)階段已通過量、折、拼的方法進行了合情推理并得出了相關(guān)的推論。在小學(xué)認識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。但在學(xué)生升入初中階段學(xué)習(xí)過推理證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明?,F(xiàn)在的學(xué)生喜歡動手實驗,操作能力較強,但對知識的歸納、概括能力以及知識的遷移能力不強。部分優(yōu)秀學(xué)生已具備良好的學(xué)習(xí)習(xí)慣,有一定分析、歸納能力。
想一想:為什么在師生猜拳中老師一直說“5”能贏?為什么選擇和多的那隊沒勝,而選擇和少的那隊卻勝了?選擇可能性大的是不是每次一定能贏?選擇可能性小是不是每一次一定都輸?(至此,本節(jié)課到了一個升華層次,學(xué)生通過互動游戲、自主探究、討論分析,從而揭示了“猜拳游戲”中的秘密,對“可能性”的理解達到了一個更高水平,有效地完成了本課重難點教學(xué)。)(4)實踐驗證。實踐驗證理論。再一次組織學(xué)生有目的地猜和,進行實踐驗證。讓理論與實踐有機的結(jié)合(三)拓展創(chuàng)新,內(nèi)化提升。兒童用品商店將要舉行促銷活動,凡到商店購物的顧客都可參加《轉(zhuǎn)盤轉(zhuǎn)轉(zhuǎn)樂》活動。每位顧客可轉(zhuǎn)兩次,用兩次指針所指數(shù)相加得到一個和,不同的和能得到相應(yīng)的獎項。
【學(xué)習(xí)目標】1.知識與技能:加深對燃燒條件的認識,進一步了解滅火的原理。2.過程與方法:體驗實驗探究的過程,學(xué)習(xí)利用實驗探究的方法研究化學(xué)。3.情感態(tài)度與價值觀:利用化學(xué)知識解釋實際生活中的具體問題,使學(xué)生充分體會到化學(xué)來源于生活,服務(wù)于社會?!緦W(xué)習(xí)重點】通過物質(zhì)燃燒條件的探究,學(xué)習(xí)利用控制變量的思想設(shè)計探究實驗,說明探究實驗的一般過程和方法?!緦W(xué)習(xí)難點】利用控制變量的思想設(shè)計對照實驗進行物質(zhì)燃燒條件的探究。【課前準備】《精英新課堂》:預(yù)習(xí)學(xué)生用書的“早預(yù)習(xí)先起步”。《名師測控》:預(yù)習(xí)贈送的《提分寶典》。情景導(dǎo)入 生成問題1.復(fù)習(xí):什么叫燃燒?燃燒條件有哪些?今天自己設(shè)計實驗來進行探究。2.明確實驗?zāi)繕?,?dǎo)入新課。合作探究 生成能力學(xué)生閱讀課本P150的相關(guān)內(nèi)容并掌握以下內(nèi)容。實驗用品:鑷子、燒杯、坩堝鉗、三腳架、薄銅片、酒精、棉花、乒乓球、濾紙、蠟燭。你還需要的實驗用品:酒精燈、水。1.實驗:用棉花分別蘸酒精和水,放到酒精燈火焰上加熱片刻。上述實驗中我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?如果在酒精燈上加熱時間較長,會發(fā)生什么現(xiàn)象?答:蘸酒精的棉花燃燒,蘸水的棉花沒有燃燒,說明燃燒需要有可燃物。如果加熱時間較長,水蒸發(fā)后,蘸水的棉花也會燃燒。2.如圖所示,進行實驗:我們能觀察到什么現(xiàn)象?說明燃燒需要什么條件?答:在酒精燈火焰上加熱乒乓球碎片和濾紙碎片,都能燃燒,說明二者都是可燃物。放在銅片兩側(cè)給它們加熱后可看到乒乓球碎片先燃燒,說明燃燒需要溫度達到可燃物的著火點。3.你能利用蠟燭和燒杯(或選擇其他用品)設(shè)計一個簡單實驗證明燃燒需要氧氣(或空氣)嗎?答:點燃兩支相同的蠟燭,然后在一支蠟燭上扣住一只杯子,看到被杯子扣住的蠟燭一會兒就熄滅,說明燃燒的條件之一是需要氧氣。
一、教材分析人教版高中思想政治必修4生活與哲學(xué)第一單元第三課第二框題《哲學(xué)史上的偉大變革》。本框主要內(nèi)容有馬克思主義哲學(xué)的產(chǎn)生和它的基本特征、馬克思主義的中國化的三大理論成果。學(xué)習(xí)本框內(nèi)容對學(xué)生來講,將有助于他們正確認識馬克思主義,運用馬克思主義中國化的理論成果,分析解決遇到的社會問題。具有很強的現(xiàn)實指導(dǎo)意義。二、學(xué)情分析高二學(xué)生已經(jīng)具備了一定的歷史知識,思維能力有一定提高,思想活躍,處于世界觀、人生觀形成時期,對一些社會現(xiàn)象能主動思考,但尚需正確加以引導(dǎo),激發(fā)學(xué)生學(xué)習(xí)馬克思主義哲學(xué)的興趣。三、教學(xué)目標1.馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源,馬克思主義哲學(xué)的基本特征。2.通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進而運用馬克思主義哲學(xué)的基本觀點分析和解決生活實踐中的問題。3.實踐的觀點是馬克思主義哲學(xué)的首要和基本的觀點,培養(yǎng)學(xué)生在實踐中分析問題和解決問題的能力,進而培養(yǎng)學(xué)生在實踐活動中的科學(xué)探索精神和革命批判精神。
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.1 不等式的基本性質(zhì)教 學(xué) 目 標知識目標:1、理解不等式的概念 2、掌握不等式的基本性質(zhì) 技能目標:1、會比較兩個數(shù)的大小 2、會用做差法比較兩個整式的大小 情感目標:體會不等式在日常生活中的應(yīng)用,感受數(shù)學(xué)的有用性教學(xué) 重點 和 難點 重點: 不等式的概念和基本性質(zhì) 難點: 1、會比較兩個整式的大小 2、能根據(jù)應(yīng)用題的表述,列出相應(yīng)的表達式教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.1課后記
課 程數(shù)學(xué)章節(jié)內(nèi)容5.1角的概念推廣課程類型新課課時安排2課時指導(dǎo)教師 日期12月2 日學(xué)習(xí)目標理解將角度從0°~360°推廣任意角。學(xué)習(xí)重點掌握角的度量、任意角學(xué)習(xí)難點理解象限角、界限角和終邊相同的角回顧(溫故知新)1、角度的概念:什么是角?始邊、終邊、頂點。 問題(順著問題找思路)1、正角.負角.零角.界限角和第幾象限的角概念?按照逆時針方向旋轉(zhuǎn)所形成的角叫做________,按照_____時針旋轉(zhuǎn)所形成的角叫負角。當射線沒有作任何旋轉(zhuǎn)時,形成的角叫________(結(jié)合圖形講解) 2、在坐標系中依次表示390°、30°、-330°,觀察圖像,探討終邊相等的角的特點、有什么關(guān)系?思考如何用集合表示終邊相等的角度?
教師姓名 課程名稱數(shù)學(xué)班 級 授課日期 授課順序 章節(jié)名稱§2.4 含絕對值的不等式教 學(xué) 目 標知識目標:1、理解絕對值的幾何意義 2、掌握簡單的含絕對值不等式的解法 3、掌握含絕對值不等式的等價形式 技能目標:1、會解形如|ax+b|>c或|ax+b|<c的絕對值不等式 情感目標:通過學(xué)習(xí),體會數(shù)形結(jié)合、整體代換及等價轉(zhuǎn)換的數(shù)學(xué)思想方法教學(xué) 重點 和 難點重點: 1、絕對值的幾何意義 2、基本絕對值不等式|x|>a或|x|<a的解 難點: 1、去絕對值符號后不等式與原不等式保持等價性教 學(xué) 資 源《數(shù)學(xué)》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.4課后記不等式的基本性質(zhì)是初中就學(xué)習(xí)過的內(nèi)容,分式不等式的解法是哦本節(jié)課的一個重點和難點,尤其是不等號另一邊不為0的情況,需要移項,這一點在強調(diào)前學(xué)生考慮不到,因此解題錯誤多。區(qū)間是個新內(nèi)容,學(xué)生往往將連續(xù)的正數(shù)寫作一個區(qū)間,這是常見的錯誤,要進行提醒。另外,在均值不等式這里稍微補充了一些內(nèi)容,引起學(xué)生的興趣。
【教學(xué)目標】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數(shù)形結(jié)合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學(xué)習(xí),學(xué)會運用變量替換的方法,從而提升計算技能?!窘虒W(xué)重點】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學(xué)難點】 利用變量替換解不等式或.【教學(xué)過程】 教 學(xué) 過 程教師 行為學(xué)生 行為教學(xué) 意圖 *回顧思考 復(fù)習(xí)導(dǎo)入 問題 任意實數(shù)的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實數(shù),有 其幾何意義是:數(shù)軸上表示實數(shù)的點到原點的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結(jié) 引導(dǎo) 分析 了解 思考 回答 觀察 領(lǐng)會 復(fù)習(xí) 相關(guān) 知識 點為 進一 步學(xué) 習(xí)做 準備 充分 借助 圖像 進行 分析
【教學(xué)目標】知識目標:⑴ 理解函數(shù)的單調(diào)性與奇偶性的概念;⑵ 會借助于函數(shù)圖像討論函數(shù)的單調(diào)性;⑶理解具有奇偶性的函數(shù)的圖像特征,會判斷簡單函數(shù)的奇偶性.能力目標:⑴ 通過利用函數(shù)圖像研究函數(shù)性質(zhì),培養(yǎng)學(xué)生的觀察能力;⑵ 通過函數(shù)奇偶性的判斷,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力.【教學(xué)重點】⑴ 函數(shù)單調(diào)性與奇偶性的概念及其圖像特征;⑵ 簡單函數(shù)奇偶性的判定.【教學(xué)難點】函數(shù)奇偶性的判斷.(*函數(shù)單調(diào)性的判斷)【教學(xué)設(shè)計】(1)用學(xué)生熟悉的主題活動將所學(xué)的知識有機的整合在一起;(2)引導(dǎo)學(xué)生去感知數(shù)學(xué)的數(shù)形結(jié)合思想.通過圖形認識特征,由此定義性質(zhì),再利用圖形(或定義)進行性質(zhì)的判斷;(3)在問題的思考、交流、解決中培養(yǎng)和發(fā)展學(xué)生的思維能力.【教學(xué)備品】教學(xué)課件.【課時安排】3課時.(90分鐘)【教學(xué)過程】
課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實際生活中常見問題,結(jié)合中專學(xué)生的實際,強調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實際應(yīng)用為主,這也體現(xiàn)了新課標中突出應(yīng)用性的理念。分段函數(shù)的實際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實際問題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時,形成一種意識,即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學(xué)計劃,函數(shù)的實際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時深化學(xué)生對函數(shù)概念的理解和認識,也為接下來學(xué)習(xí)指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學(xué)生實際情況,由生活生產(chǎn)中的實際問題入手,求得分段函數(shù)此部分知識以學(xué)生生活常識為背景,可以引導(dǎo)學(xué)生分析得出。
創(chuàng)設(shè)情景 興趣導(dǎo)入問題 觀察鐘表,如果當前的時間是2點,那么時針走過12個小時后,顯示的時間是多少呢?再經(jīng)過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當前時間2點重復(fù)出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個不為零的常數(shù),當取定義域內(nèi)的每一個值時,都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個函數(shù)的一個周期. 由于正弦函數(shù)的定義域是實數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學(xué)生的數(shù)形結(jié)合思想,還有利于學(xué)生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應(yīng)用本節(jié)課所學(xué)的知識以及所積累形成的學(xué)習(xí)經(jīng)驗和體驗解決問題的過程,即課堂鞏固訓(xùn)練。在練習(xí)題的選擇上,由簡單到復(fù)雜。先是結(jié)合圖象獲取信息進行簡單的填空和選擇,此題屬于A組題型,檢驗學(xué)生的掌握情況;然后進行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識點的靈活運用,進一步通過練習(xí)體會它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學(xué)習(xí)的分段函數(shù)練習(xí),發(fā)散學(xué)生思維問題的訓(xùn)練。讓學(xué)生體會分段函數(shù)的特點,并掌握求分段函數(shù)解析式的方法。
1.圈點、勾畫重要詞語評點的讀書習(xí)慣和方法。如全出描繪秋色的詞語,標出傳遞秋聲的詞語,點評北國故都秋色的詞語、南國秋色的詞語,攝取主要信息。2.口、耳、手、腦并用的讀書習(xí)慣和方法。如默讀、聽讀、跟讀時,不動筆墨不看書,不動思維不讀書。3.學(xué)以致用的遷移運用方法。如投影儀的練習(xí)設(shè)計,讓學(xué)生由品文到品讀詩詞等。四、說教學(xué)程序(一)導(dǎo)語激趣人們常說,良好的開端是成功的一半,因而導(dǎo)語也就顯得十分重要。好的導(dǎo)語能營造適宜的課堂氛圍,集中學(xué)生的注意力,調(diào)動學(xué)生的學(xué)習(xí)情緒,使學(xué)生對學(xué)習(xí)的內(nèi)容產(chǎn)生濃厚的興趣。這篇課文的導(dǎo)語我是這樣來設(shè)計的:同學(xué)們,自古詩家多愛秋,因為秋是文人心中的一粒愁種子。“無邊落木蕭蕭下,不盡長江滾滾來?!边@是杜甫面對秋風(fēng)登高而抒懷;“梧桐更兼細雨,到黃昏,點點滴滴。這次第,怎一個愁字了得?!边@是李清照面對秋雨而吟詠愁情。秋風(fēng)秋雨愁煞人啦。
教學(xué)目標:1.會畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會根據(jù)三視圖描述原幾何體。教學(xué)重點:掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點:幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實踐法一、實物觀察、空間想像觀察:請同學(xué)們拿出事先準備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過 想像,再抽象出這兩個直棱柱的主視圖,左視圖和俯視圖。繪制:請你將抽象出來的三種視圖畫出來,并與同伴交流。比較:小亮畫出了其中一個幾何體的主視圖、左視圖和俯視圖,你認為他畫的對不對?談?wù)勀愕目捶?。拓展:當你手中的兩個直棱柱擺放的角度變化時,它們的三種視圖是否會隨之改變?試一試。
(一)教材分析本節(jié)課是在學(xué)生已經(jīng)學(xué)過除法和分數(shù)的意義以及分數(shù)與除法的關(guān)系的基礎(chǔ)上進行教學(xué)的。由于學(xué)生在理解比的意義上比較困難,教材并沒有采取直接給出“比”的概念的做法,而是密切聯(lián)系學(xué)生已有的生活經(jīng)驗和學(xué)習(xí)經(jīng)驗,提供了多種情境,引發(fā)學(xué)生的討論和思考,讓學(xué)生體會引入比的必要性,感受比在生活中的廣泛存在,也為“比的應(yīng)用”“比例”等后續(xù)學(xué)習(xí)做好鋪墊。(二)教學(xué)目標在認真分析教材的基礎(chǔ)上,結(jié)合學(xué)生實際,我從知識、能力、情感等方面擬定了本節(jié)課的教學(xué)目標:知識目標:經(jīng)歷從具體情境中抽象出比的過程,理解比的意義,能正確讀寫比,會求比值。能力目標:培養(yǎng)學(xué)生自主學(xué)習(xí)、獨立思考,能利用比的知識解決一些生活中的數(shù)學(xué)問題。情感目標:引導(dǎo)學(xué)生廣泛聯(lián)系生活實際,充分感受數(shù)學(xué)知識的美與樂趣,激發(fā)學(xué)生的求知欲望。
師:同學(xué)們真聰明,小精靈的問題回答出來了,現(xiàn)在就讓我們一起走進兒童樂園吧。(出示課件)請大家注意觀察,兒童樂園中都有哪些景點?師:從兒童樂園出發(fā)經(jīng)過百鳥園去猴山一共有幾條路?請同學(xué)們仔細觀察:從兒童樂園到百鳥園有幾條路?從百鳥園去猴山有幾條路?(生回答。)師:我們給這5條路分別標上序號。(課件演示)現(xiàn)在請同學(xué)們想一想從兒童樂園的入口經(jīng)過百鳥園到達猴山一共有幾條路線?請同學(xué)們把答案寫在記錄紙上。(生匯報。)師:路線設(shè)計好了,讓我們一起到猴山看一看可愛的小猴子吧?。ǚ藕锷降匿浵?。)師:看,它們是一對著名的動物小明星,會演雜技的小猴寶寶和貝貝,你們想和它們照相留念嗎?生:想。師:好!那我們每個人都和寶寶、貝貝各照一張相片,同學(xué)們想一想,我們?nèi)?0個人一共要照多少張相片兒呢?
六、教學(xué)反思 從這節(jié)課的實施情況看,課堂實施與原先的公開課教案是比較一致的,效果也是比較好的,主要體現(xiàn)于以下兩點: 1、效果得益于“跳出”--跳出教材框框 剛開始備課和試教時,我打算充沛利用教材,根據(jù)教材上的內(nèi)容出示幻燈片讓同學(xué)說一說,但一節(jié)課下來顯得很單調(diào)、信息量很少,體現(xiàn)不出生活中數(shù)的味道。于是我開放教材,跳出教材的框框,課前安排一個“找生活中的數(shù)”實踐活動把同學(xué)放到社會生活之林中去,讓他們先找些“野食”吃。這樣,課前在準備過程當中積累的素材多了,同學(xué)的學(xué)習(xí)效益大大提高了。同學(xué)在豐富多彩的實際生活中自由自在地采擷自身感興趣的“果子”,他們采來的“果子”是絢麗多姿的,然后回到課堂交流,共享到了“果子”的豐富,起到“以一當數(shù)十”的作用。 這個“跳出”戰(zhàn)略,體現(xiàn)了現(xiàn)代科學(xué)“系統(tǒng)論”的理論。系統(tǒng)論認為:系統(tǒng)只有開放,不時吸收外界的信息,才干使自身“有序”。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.