解:設(shè)每張300元的門票買了x張,則每張400元的門票買了(8-x)張,由題意得300x+400×(8-x)=2700,解得x=5,∴買400元每張的門票張數(shù)為8-5=3(張).答:每張300元的門票買了5張,每張400元的門票買了3張.方法總結(jié):解題的關(guān)鍵是熟練掌握列方程解應(yīng)用題的一般步驟:①根據(jù)題意找出等量關(guān)系;②列出方程;③解方程;④作答.三、板書設(shè)計(jì)本節(jié)課的教學(xué)先讓學(xué)生回顧上一節(jié)所學(xué)的知識(shí),復(fù)習(xí)鞏固方程的解法,讓學(xué)生進(jìn)一步明白解方程的步驟是逐漸發(fā)展的,后面的步驟是在前面步驟的基礎(chǔ)上發(fā)展而成的.然后通過(guò)一個(gè)實(shí)際問(wèn)題,列出一個(gè)有括號(hào)的方程,大膽放手讓學(xué)生去探索、猜想各種解法,去嘗試各種解題的途徑,啟發(fā)學(xué)生在化歸思想影響下想到要去括號(hào).
兩道例題,第一道題師生共同分析,第二道題學(xué)生自己分析。部分學(xué)生在運(yùn)用方程解答問(wèn)題時(shí),等量關(guān)系的尋找還是有困難,規(guī)范解題不夠合理,仍需在作業(yè)過(guò)程中教師給予適當(dāng)?shù)闹笇?dǎo)。四、課堂小結(jié)這節(jié)課我們學(xué)習(xí)了有關(guān)打折銷售的知識(shí),其實(shí)類似的問(wèn)題我們小學(xué)也遇到過(guò),今天在分析實(shí)際問(wèn)題時(shí)又用到了列表法,通過(guò)這節(jié)課的學(xué)習(xí),談?wù)勀阍谥R(shí)方面的收獲。提示學(xué)生通過(guò)對(duì)《日歷中的方程》《我變高了》以及本節(jié)《打折銷售》學(xué)習(xí)還有以往經(jīng)驗(yàn),讓學(xué)生分組討論,用一元一次方程解決實(shí)際問(wèn)題的一般步驟是什么?目的:讓學(xué)生進(jìn)一步體會(huì)方程的作用,這里教師又提到學(xué)生的小學(xué)學(xué)習(xí),目的是想提示學(xué)生,將今天的方程解法與小學(xué)學(xué)過(guò)的算術(shù)方法相對(duì)比。此活動(dòng)的目的是使學(xué)生不再處于被動(dòng)狀態(tài),而成為積極的發(fā)現(xiàn)者。
方法總結(jié):讓利10%,即利潤(rùn)為原來(lái)的90%.探究點(diǎn)三:求原價(jià)某商場(chǎng)節(jié)日酬賓:全場(chǎng)8折.一種電器在這次酬賓活動(dòng)中的利潤(rùn)率為10%,它的進(jìn)價(jià)為2000元,那么它的原價(jià)為多少元?解析:本題中的利潤(rùn)為(2000×10%)元,銷售價(jià)為(原價(jià)×80%)元,根據(jù)公式建立起方程即可.解:設(shè)原價(jià)為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價(jià)為2750元.方法總結(jié):典例關(guān)系:售價(jià)=進(jìn)價(jià)+利潤(rùn),售價(jià)=原價(jià)×打折數(shù)×0.1,售價(jià)=進(jìn)價(jià)×(1+利潤(rùn)率).三、板書設(shè)計(jì)本節(jié)課從和我們的生活息息相關(guān)的利潤(rùn)問(wèn)題入手,讓學(xué)生在具體情境中感受到數(shù)學(xué)在生活實(shí)際中的應(yīng)用,從而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣.根據(jù)“實(shí)際售價(jià)=進(jìn)價(jià)+利潤(rùn)”等數(shù)量關(guān)系列一元一次方程解決與打折銷售有關(guān)的實(shí)際問(wèn)題.審清題意,找出等量關(guān)系是解決問(wèn)題的關(guān)鍵.另外,商品經(jīng)濟(jì)問(wèn)題的題型很多,讓學(xué)生觸類旁通,達(dá)到舉一反三,靈活的運(yùn)用有關(guān)的公式解決實(shí)際問(wèn)題,提高學(xué)生的數(shù)學(xué)能力.
先讓學(xué)生自己總結(jié),然后互相交流,得出結(jié)論。解一元一次方程,一般要通過(guò)去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個(gè)一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時(shí),要靈活運(yùn)用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質(zhì)22、 去括號(hào)----去括號(hào)法則3、 移項(xiàng)----等式性質(zhì)14、 合并同類項(xiàng)----合并同類項(xiàng)法則5、 系數(shù)化為1.----等式性質(zhì)2【課堂練習(xí)】練習(xí):解下列一元一次方程解方程: (2) ;思路點(diǎn)拔:(1)去分母所選的乘數(shù)應(yīng)是所有分母的最小公倍數(shù),不應(yīng)遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時(shí),不要漏掉等號(hào)兩邊不含分母的項(xiàng)。(3)去掉分母后,分?jǐn)?shù)線也同時(shí)去掉,分子上的多項(xiàng)式用括號(hào)括起來(lái)。回顧解以上方程的全過(guò)程,表示了一元一次方程解法的一般步驟,通過(guò)去分母—去括號(hào)—移項(xiàng)—合并同類項(xiàng)—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉(zhuǎn)化。
小明說(shuō):“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問(wèn)小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關(guān)系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結(jié):根據(jù)乘法分配律和去括號(hào)法則(括號(hào)前面是“+”號(hào),把“+”號(hào)和括號(hào)去掉,括號(hào)內(nèi)各項(xiàng)都不改變符號(hào);括號(hào)前面是“-”號(hào),把“-”號(hào)和括號(hào)去掉,括號(hào)內(nèi)各項(xiàng)都改變符號(hào))去括號(hào)時(shí)要注意:1、 不要漏乘括號(hào)內(nèi)的任何一項(xiàng);2、若括號(hào)前面是“-”號(hào),記住去括號(hào)后括號(hào)內(nèi)各項(xiàng)都變號(hào).習(xí)題訓(xùn)練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡(jiǎn)單的應(yīng)用題,如課本P123練一練3或補(bǔ)充一些題,如含小括號(hào)、中括號(hào)、大括號(hào)的方程(這方面課本安排幾乎沒有,只限淺顯問(wèn)題,教師不必深究)
1、突出問(wèn)題的應(yīng)用意識(shí).教師首先用一個(gè)學(xué)生感興趣的實(shí)際問(wèn)題引人課題,然后運(yùn)用算術(shù)的方法給出解答。在各環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)的問(wèn)題,使學(xué)生能圍繞問(wèn)題展開思考、討論,進(jìn)行學(xué)習(xí).2、體現(xiàn)學(xué)生的主體意識(shí).本設(shè)計(jì)中,教師始終把學(xué)生放在主體的地位:讓學(xué)生通過(guò)對(duì)列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過(guò)合作與交流,得出問(wèn)題的不同解答方法;讓學(xué)生對(duì)一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納.3、體現(xiàn)學(xué)生思維的層次性.教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決間題,然后再逐步引導(dǎo)學(xué)生列出含未知數(shù)的式子,尋找相等關(guān)系列出方程.在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中,教師都注意了學(xué)生思維的層次性.4、滲透建模的思想.把實(shí)際間題中的數(shù)量關(guān)系用方程形式表示出來(lái),就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問(wèn)題抽象出方程模型的能力.
某文具店一支鉛筆的售價(jià)為1.2元,一支圓珠筆的售價(jià)為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動(dòng),鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.若設(shè)鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設(shè)鉛筆賣出x支,根據(jù)“鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元”,得出等量關(guān)系:x支鉛筆的售價(jià)+(60-x)支圓珠筆的售價(jià)=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找到題目當(dāng)中的等量關(guān)系,最后列方程.三、板書設(shè)計(jì)教學(xué)過(guò)程中,通過(guò)對(duì)多種實(shí)際問(wèn)題情境的分析,感受方程作為刻畫現(xiàn)實(shí)世界有效模型的意義,通過(guò)觀察、歸納一元一次方程的概念,使學(xué)生在分析實(shí)際問(wèn)題情境的活動(dòng)中體會(huì)數(shù)學(xué)與現(xiàn)實(shí)的密切聯(lián)系.
1.會(huì)用二次根式的四則運(yùn)算法則進(jìn)行簡(jiǎn)單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長(zhǎng)分別是多少?這兩個(gè)數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個(gè)二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡(jiǎn).【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
本節(jié)課開始時(shí),首先由一個(gè)要在一塊長(zhǎng)方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個(gè)二次根式求和的運(yùn)算。從而提出問(wèn)題:如何進(jìn)行二次根式的加減運(yùn)算?這樣通過(guò)問(wèn)題指向本課研究的重點(diǎn),激發(fā)學(xué)生的學(xué)習(xí)興趣和強(qiáng)烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運(yùn)算法則,在設(shè)計(jì)本課時(shí)教案時(shí),著重從以下幾點(diǎn)考慮:1.先通過(guò)對(duì)實(shí)際問(wèn)題的解決來(lái)引入二次根式的加減運(yùn)算,再由學(xué)生自主討論并總結(jié)二次根式的加減運(yùn)算法則。2.四人小組探索、發(fā)現(xiàn)、解決問(wèn)題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實(shí)際問(wèn)題的能力。3.對(duì)法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運(yùn)用二次根式的加減法運(yùn)算法則的學(xué)習(xí)過(guò)程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開方而是乘法,但為了方便起見,我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過(guò)程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問(wèn)題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.
屬于此類問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
【設(shè)計(jì)意圖:讓學(xué)生在操作、探索的基礎(chǔ)上,組內(nèi)交流想法,再在班內(nèi)交流匯報(bào),讓學(xué)生的語(yǔ)言得到相互交流、碰撞,從而不斷激發(fā)學(xué)生的思維火花?!繋煟耗隳馨堰@些擺法用算式寫出來(lái)嗎?(學(xué)生獨(dú)立寫出算式并匯報(bào))依學(xué)生匯報(bào)板書:1×12=122×6=1212×1=126×2=123×4=124×3=12師:請(qǐng)同學(xué)們觀察一下,哪兩道算式的因數(shù)一樣?學(xué)生觀察算式,找出因數(shù)一樣的算式。師:那么,這6個(gè)算式最少能用幾種算式表示出來(lái)?引導(dǎo)學(xué)生說(shuō)出能用3種方法表示,這三種方法是:1×12=122×6=123×4=12,并指明算式一樣時(shí)選擇其中一種說(shuō)出來(lái)。板書:12=1×12=2×6=3×4師:同學(xué)們觀察一下,12的因數(shù)有哪幾個(gè)?(學(xué)生說(shuō)出12的因數(shù)有:1、12、2、6、3、4。)師:拼長(zhǎng)方形與找因數(shù)有什么關(guān)系呢?(指名學(xué)生說(shuō)一說(shuō))師:根據(jù)剛才的操作交流,請(qǐng)同學(xué)們說(shuō)一說(shuō)怎樣找一個(gè)數(shù)的因數(shù)呢?(學(xué)生思考片刻后匯報(bào),可以組內(nèi)交流。)引導(dǎo)學(xué)生說(shuō)出:用乘法思路想,看哪兩個(gè)數(shù)相乘得12,然后一對(duì)一對(duì)找出來(lái)。
第一:說(shuō)教材?!百|(zhì)數(shù)和合數(shù)”是九年義務(wù)教育小學(xué)數(shù)學(xué)五年級(jí)(上)第三單元的內(nèi)容,在教材第39~40頁(yè);是學(xué)生學(xué)習(xí)了因數(shù)和倍數(shù)的意義,了解了2、5、3倍數(shù)的特征之后的重要知識(shí),它是學(xué)生學(xué)習(xí)分解質(zhì)因數(shù)、求最大公約數(shù)和最小公倍數(shù)的基礎(chǔ),在本章教學(xué)中起著承前啟后的重要作用。第二:說(shuō)教法:根據(jù)新課標(biāo)的精神和學(xué)生實(shí)際,我將本節(jié)課教學(xué)目標(biāo)定為:1)找因數(shù)填表格經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過(guò)程,理解質(zhì)數(shù)與合數(shù)的意義;2)能正確判斷一個(gè)數(shù)是質(zhì)數(shù)或合數(shù);3)在研究質(zhì)數(shù)的過(guò)程中豐富對(duì)數(shù)學(xué)發(fā)展的認(rèn)識(shí),感受數(shù)學(xué)發(fā)展的文化魅力;4)、在猜想——驗(yàn)證——概括——理解的過(guò)程中體會(huì)學(xué)習(xí)數(shù)學(xué)的樂趣,積累數(shù)學(xué)學(xué)習(xí)的方法。第三:說(shuō)教學(xué)重難點(diǎn)重點(diǎn):理解質(zhì)數(shù)與合數(shù)的意義。難點(diǎn):能正確判斷一個(gè)數(shù)是質(zhì)數(shù)還是合數(shù),體會(huì)數(shù)學(xué)學(xué)習(xí)的方法。教學(xué)準(zhǔn)備:課件教學(xué)安排:兩課時(shí)。
2、提出問(wèn)題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少?gòu)埬兀?、揭示課題:分餅二、動(dòng)手操作,探究新知:活動(dòng)操作一:3張餅平均分給4個(gè)人。1、要求學(xué)生用準(zhǔn)備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進(jìn)行指導(dǎo)。2、各小組匯報(bào)分法及分得的結(jié)果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請(qǐng)學(xué)生上臺(tái)演示分的整個(gè)過(guò)程。第二種分法:把3張餅疊起來(lái),平均分成4份,每人分得3張餅的,也是張餅,請(qǐng)學(xué)生上臺(tái)演示分的整個(gè)過(guò)程。3、演示學(xué)生兩種分法的圖片:4、請(qǐng)觀察,這個(gè)分?jǐn)?shù)有什么特點(diǎn),分子比分母小,你還能舉幾個(gè)這樣的例子嗎?像這樣的分?jǐn)?shù)叫作真分?jǐn)?shù),真分?jǐn)?shù)小于1。
尊敬的領(lǐng)導(dǎo),評(píng)委老師:大家好,今天我說(shuō)課的題目是北師大版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)第一單元第五節(jié)《除得盡嗎》。我將會(huì)以說(shuō)教材、說(shuō)學(xué)生、說(shuō)教法、說(shuō)教學(xué)過(guò)程、說(shuō)教學(xué)效果評(píng)測(cè)、說(shuō)反思等六各方面進(jìn)行我的說(shuō)課。一:說(shuō)教材《除得盡嗎》本節(jié)內(nèi)容是本單元的第五節(jié),是在學(xué)生已經(jīng)學(xué)習(xí)了整數(shù)除整數(shù)、整數(shù)除小樹、小樹除小數(shù)、以及四舍五入保留若干位小樹的基礎(chǔ)之上進(jìn)行設(shè)置的。本節(jié)內(nèi)容的主要知識(shí)點(diǎn)就是讓學(xué)生認(rèn)識(shí)循環(huán)小數(shù)、表示循環(huán)小數(shù)以及“四舍五入”法取其近似值,總體難度不大。二:說(shuō)學(xué)生對(duì)于五年級(jí)學(xué)生而言,已經(jīng)在四年級(jí)學(xué)習(xí)了“四舍五入”法,所以在本節(jié)新授教學(xué)中已經(jīng)有了一定的基礎(chǔ)。對(duì)于教師的教和學(xué)生的學(xué)都有了一定的促進(jìn)作用。
課程標(biāo)準(zhǔn)中明確指出:“小學(xué)數(shù)學(xué)的教學(xué)內(nèi)容絕大多數(shù)可以聯(lián)系學(xué)生的生活實(shí)際,找準(zhǔn)每一節(jié)教材內(nèi)容與學(xué)生生活實(shí)際的“切入點(diǎn)”可讓學(xué)生產(chǎn)生一種熟悉感、親切感“,以及“數(shù)學(xué)教學(xué)活動(dòng)中,教師應(yīng)向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿鞯倪^(guò)程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能。”要將這個(gè)理念落實(shí)在課堂教學(xué)中,就要求教師能根據(jù)教學(xué)的具體內(nèi)容,選擇恰當(dāng)?shù)膶W(xué)習(xí)方式,并巧妙創(chuàng)設(shè)學(xué)生主動(dòng)探索的機(jī)會(huì),變“接受學(xué)習(xí)”為“創(chuàng)造學(xué)習(xí)”,讓學(xué)生在觀察、操作、討論、交流、歸納、整理、概括的過(guò)程中學(xué)習(xí)新知,充分以學(xué)生為主體,逐步培養(yǎng)學(xué)生的創(chuàng)新意識(shí),形成初步的探索和解決問(wèn)題的能力。根據(jù)以上思想,本節(jié)課的設(shè)計(jì)我主要從尊重學(xué)生已有的知識(shí)經(jīng)驗(yàn);在觀察與操作中去親身體驗(yàn)知識(shí)的形成過(guò)程,掌握約分的方法。
說(shuō)教材:北師大版數(shù)學(xué)一年級(jí)下冊(cè)第三單元“生活中的數(shù)”第五課時(shí)小小養(yǎng)殖場(chǎng)。本單元是結(jié)合生活實(shí)際,理解多一些、多得多、少一些、少得多的含義。使學(xué)生能在具體情境中把握數(shù)的相對(duì)大小關(guān)系,發(fā)展學(xué)生的數(shù)感。說(shuō)教學(xué)目標(biāo):1.結(jié)合生活實(shí)際,理解多一些、多得多、少一些、少得多的含義。2.使學(xué)生能在具體情境中把握數(shù)的相對(duì)大小關(guān)系,發(fā)展學(xué)生的數(shù)感。說(shuō)重點(diǎn)、難點(diǎn)結(jié)合實(shí)踐經(jīng)驗(yàn),理解“多一些,多得多,少一些,少得多,差不多”的含義說(shuō)教法與學(xué)法:本節(jié)課要讓學(xué)生在已有經(jīng)驗(yàn)的基礎(chǔ)上讓學(xué)生獲得體驗(yàn)和理解。結(jié)合一年級(jí)學(xué)生活潑好動(dòng)、求知欲強(qiáng)和本節(jié)課學(xué)習(xí)素材的特點(diǎn),實(shí)現(xiàn)轉(zhuǎn)變教學(xué)方式和學(xué)生的學(xué)習(xí)方式,體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的教學(xué)原則,我設(shè)計(jì)了以下的教法和學(xué)法,既重視選擇靈活的教法,又注重對(duì)學(xué)生學(xué)法的指導(dǎo)。
一、說(shuō)教材今天我說(shuō)課的題目是《小兔請(qǐng)客》,《小兔請(qǐng)客》選自北師大數(shù)學(xué)教材一年級(jí)下冊(cè)第五單元《加與減》(二)的第一個(gè)內(nèi)容,這節(jié)課是在學(xué)生學(xué)習(xí)了20以內(nèi)加減法和100以內(nèi)數(shù)的認(rèn)識(shí)的基礎(chǔ)上安排的整十?dāng)?shù)加減整十?dāng)?shù)的一節(jié)課,本節(jié)課從學(xué)生感興趣的小兔請(qǐng)客這一情境中抽象出加減法算式,體會(huì)加減法的意義,學(xué)習(xí)掌握計(jì)算的方法理解算理。這節(jié)課為學(xué)生繼續(xù)學(xué)習(xí)加減法計(jì)算起著重要的鋪墊作用。二、說(shuō)教學(xué)目標(biāo)1、讓學(xué)生在具體的情境中經(jīng)歷提出問(wèn)題、解決問(wèn)題的過(guò)程,進(jìn)一步體會(huì)加減法的意義。2、探索并掌握整十?dāng)?shù)加、減整十?dāng)?shù)的計(jì)算方法,體會(huì)算法的多樣性。3、認(rèn)識(shí)加減算式各部分的名稱。4、激發(fā)學(xué)生的學(xué)習(xí)興趣。三、說(shuō)重點(diǎn)、難點(diǎn)重點(diǎn):計(jì)算是低年級(jí)教學(xué)的重要內(nèi)容,探索并掌握整十?dāng)?shù)加減整十?dāng)?shù)的計(jì)算方法、理解算理則是本節(jié)課的重點(diǎn)。
說(shuō)教學(xué)目標(biāo)【知識(shí)與技能】1.掌握十幾減7、6退位減法的計(jì)算方法。2.能較準(zhǔn)確地計(jì)算十幾減7、6的減法,進(jìn)一步提高學(xué)生的計(jì)算能力和分析、歸納能力?!具^(guò)程與方法】創(chuàng)設(shè)情境,通過(guò)學(xué)生說(shuō)一說(shuō)、擺一擺等活動(dòng)讓學(xué)生自主探究十幾減7、6的減法,明確算理。培養(yǎng)學(xué)生的探索能力?!厩楦?、態(tài)度與價(jià)值觀】讓學(xué)生進(jìn)一步感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生的問(wèn)題意識(shí)。說(shuō)教學(xué)過(guò)程一、創(chuàng)設(shè)情境,激趣導(dǎo)入師:一群可愛的小鴨子正在快樂地玩耍呢,我們一起去看看吧。(出示快樂的小鴨圖)提問(wèn):仔細(xì)地看圖,說(shuō)一說(shuō)圖的意思是什么?你在圖上知道了什么?你能提出什么數(shù)學(xué)問(wèn)題?學(xué)生互相說(shuō)圖意。12只小鴨到河邊去玩耍,有7只到河里游泳了。引導(dǎo)學(xué)生提出問(wèn)題:,還剩幾只在河邊?