【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個活動中,都設(shè)計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結(jié)、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.
分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應當乘的單項式,分子也相應地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質(zhì)進行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因此本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學和作業(yè)中進一步進行鞏固和提高.
教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學問題,能夠借助于計算器進行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關(guān)術(shù)語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應用.
如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結(jié)內(nèi)容總結(jié)不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時,常常使用計算器幫助我們處理比較復雜的計算。
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結(jié)論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關(guān)系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出.
4.聯(lián)系作者的寫作背景賞析第三節(jié),說說第三節(jié)中的意象有怎樣的象征意義。通過這些意象,我們可以看出作者的思想感情有怎樣的變化?明確:意象:“神話的蛛網(wǎng)”“雪被下古蓮的胚芽”“掛著眼淚的笑渦”“雪白的起跑線”“緋紅的黎明”。“神話的蛛網(wǎng)”象征束縛生產(chǎn)力發(fā)展,鉗制思想解放的專制統(tǒng)治和陳腐意識,只有掙脫了“神話的蛛網(wǎng)”才能誕生“簇新的理想”;“雪被下古蓮的胚芽”“掛著眼淚的笑渦”“雪白的起跑線”“緋紅的黎明”這些意象在時空上大幅度跳躍,構(gòu)成了立體交叉象征義,象征著祖國成長的苦難歷程、再生的悲喜、新長征的開始和未來的美景。上述意象有一個共同的特征,那就是代表著希望,代表著開始。作者正是用這些意象,表現(xiàn)著自己的欣喜與激動。
教學目標1、通過教學,學生懂得應用加法運算定律可以使一些分數(shù)計算簡便,會進行分數(shù)加法的簡便計算.2、培養(yǎng)學生仔細、認真的學習習慣.3、培養(yǎng)學生觀察、演繹推理的能力.教學重點整數(shù)加法運算定律在分數(shù)加法中的應用,并使一些分數(shù)加法計算簡便.教學難點整數(shù)加法運算定律在分數(shù)加法中的應用,并使一些分數(shù)加法計算簡便.教學過程設(shè)計一、復習準備(演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.教師:整數(shù)加法的運算定律有哪幾個?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應用了什么運算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分數(shù)加法呢?這節(jié)課我們就一起來研究.二、學習新課(繼續(xù)演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?
圖文對照,讀中感悟1.學習第1、2自然段。師:要去野外找春天了,課文中的小朋友現(xiàn)在是懷著什么樣的心情呢?(高興的、急切的、激動的)請你也帶著這樣的心情讀一讀第一、二自然段吧?自由讀。指名讀本段,讀后評價悟出應把“脫”、“沖”、“奔”重讀才能更加體現(xiàn)出孩子們找春天的迫切心情。2.請大家自由讀第3 ~7自然段,想一想,作者把春天想象成什么了(一個害羞的小姑娘)。這個害羞的小姑娘,遮遮掩掩、躲躲藏藏的,不想讓人們發(fā)現(xiàn)她??墒羌毿牡男∨笥堰€是找到了她。這些小朋友都在哪找到她了?你知道嗎?從書中找到有關(guān)的句子再讀一讀。(學生邊畫、邊讀。)小草從地下探出頭來,那是春天的眉毛吧?早開的野花一朵兩朵,那是春天的眼睛吧?樹林吐出點點嫩芽,那是春天的音符吧?解凍的小溪丁丁咚咚,那是春天的琴聲吧?
學生總結(jié)得出:只有乘法和除法,都是按從左往右進行計算的。這個環(huán)節(jié)的教學,教師的“導”起著關(guān)鍵的作用,多媒體的展示也為學生的比較、分析、歸納出四則運算的方法有一定的促進作用。分散了教學的難度,挖掘了教材的深度,培養(yǎng)學生的發(fā)散思維。接著小結(jié)方法,教師:像我們以后遇到這樣的加減法計算或乘除法計算的時候,應怎么樣計算呢?得出并板書:在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。3、鞏固練習教師課件出示:做一做讓學生獨立完成。再上臺板演,并說說解題的方法和計算步驟,4、回顧與小結(jié) 這節(jié)課你學會了什么知識?是怎么學的?又有什么收獲?七、板書設(shè)計: 72-44+85 72+85-44 987÷3×6 6÷3×987 987×6÷3 =28+85 =157-44 =329×6 =2×987 =5922÷3 =113 =113 =1974 =1974 =1974 在沒有括號的算式里,如果只有加、減法或者只有乘、除法,都要從左往右按順序計算。
2.過程與方法 培養(yǎng)學生的應用意識和實踐能力,使學生感受數(shù)學在生活中的作用。3.情感態(tài)度與價值觀結(jié)合實際對學生進行思想品德教育,鼓勵學生節(jié)約用錢,支援貧困地區(qū)的失學兒童。 【教學重點】 理解本金、利率和利息的含義正確地計算利息。 【教學難點】 正確地計算利息?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法。【課前準備】 多媒體課件【課時安排】 1課時【教學過程】(一)復習導入 1. 師:同學們,你們到銀行存錢或取過錢嗎?(課件第2張)人們?yōu)槭裁匆彦X存入銀行呢?生1:人們常常把暫時不用的錢存入銀行儲蓄起來。(課件第3張)生2:儲蓄不僅可以支援國家建設(shè),也使得個人錢財更安全,還可以增加一些收入。2.師:這節(jié)課我們就走進銀行,來來學習“利率”的知識。(板書課題:利率)
2.過程與方法 通過小組合作整理知識框架,提高學習的系統(tǒng)性,培養(yǎng)學生歸納、總結(jié)等自我復習能力及團隊合作精神,加強生與生之間的合作學習能力和綜合運用數(shù)學知識解決實際生活問題的能力。3.情感態(tài)度與價值觀在復習活動中讓學生體驗數(shù)學與生活實際的密切聯(lián)系,培養(yǎng)學生的數(shù)學應用意識,激發(fā)學生成功學習數(shù)學和自信心和創(chuàng)新意識,滲透事物間是相互聯(lián)系的辯證唯物主義觀點?!窘虒W重點】 理解比和比例的意義、性質(zhì),掌握關(guān)于比和比例的一些實際運用和計算?!窘虒W難點】能理清知識間的聯(lián)系,建構(gòu)起知識網(wǎng)絡?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】
(一)復習導入 1. 師:同學們,上節(jié)課我們學習了折扣,你會做下面的題嗎?(課件第2張)(1)五五折表示十分之(五點五),也就是(55)%。 (2)一件商品打九八折出售,就是按原價的(98%)出售。(3)一件上衣原價75元,現(xiàn)在打八折售出,現(xiàn)在買這件上衣需要(60)元。(4)現(xiàn)價=(原價)×(折扣)2.師:生活中的百分數(shù)還有很多,比如說“成數(shù)”。例如:今年我省油菜籽比去年增產(chǎn)二成。這節(jié)課我們就來學習“成數(shù)”。(板書課題:成數(shù))(課件第3張)【設(shè)計意圖】 “折扣”與“成數(shù)”雖然運用不一樣,但解決方法大致相同,復習不僅可以起到鞏固作用,也能讓學生對新知的解決有一些鋪墊。(二)探究新知 1、探究成數(shù)的含義以及成數(shù)和百分數(shù)的關(guān)系。(課件第4張)(1)農(nóng)業(yè)收成,經(jīng)常用成數(shù)來表示。你知道什么是成數(shù)嗎? 生1:成數(shù)表示一個數(shù)是另一個數(shù)的十分之幾,通稱“幾成”。“一成”就是十分之一,改寫成百分數(shù)是10%。(2)填一填。(課件第5張)“二成”就是(十分之二),改寫成百分數(shù)是(20%);“三成五”就是(十分之三點五),改寫成百分數(shù)是(35%)。“四成三”就是(十分之四點三),改寫成百分數(shù)是(43%);“六成五”就是(十分之六點五),改寫成百分數(shù)是(65%)。(3)把下面的成數(shù)改寫成百分數(shù)。 (課件第6張)三成=(30)% 四成六=(46)% 九成九=(99)% 二成五=(25)% 一成二=(12)% 七成三=(73)%