方法總結(jié):作平移圖形時(shí),找關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對(duì)應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對(duì)應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);④按原圖形順序依次連接對(duì)應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書設(shè)計(jì)1.平移的定義在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移.2.平移的性質(zhì)一個(gè)圖形和它經(jīng)過平移所得的圖形中,對(duì)應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對(duì)應(yīng)線段平行(或在一條直線上)且相等,對(duì)應(yīng)角相等.3.簡(jiǎn)單的平移作圖教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識(shí)靈活運(yùn)用到生活中.
方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來解決問題,我們一定要把知識(shí)融會(huì)貫通,在解決問題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動(dòng)點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長(zhǎng)度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長(zhǎng),此時(shí)OP為半徑的長(zhǎng);當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長(zhǎng).解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長(zhǎng),∴OP的長(zhǎng)度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長(zhǎng)、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.
一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯(cuò)點(diǎn)是對(duì)△BED是等腰三角形認(rèn)識(shí)不足,解題的關(guān)鍵是對(duì)折疊后的幾何形狀要有一個(gè)正確的分析.三、板書設(shè)計(jì)矩形矩形的定義:有一個(gè)角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個(gè)角都是直角兩組對(duì)邊分別平行且相等對(duì)角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會(huì)邏輯推理的思維價(jià)值.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長(zhǎng)CD到點(diǎn)E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因?yàn)镃D是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因?yàn)镈E=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對(duì)角線相等且互相平分的四邊形是矩形)。四、課堂檢測(cè):1.下列說法正確的是( )A.有一組對(duì)角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對(duì)角線互相平分的四邊形是矩形 D.對(duì)角互補(bǔ)的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個(gè)角是直角的四邊形是矩形 ( )(2)四個(gè)角都是直角的四邊形是矩形 ( )(3)四個(gè)角都相等的四邊形是矩形 ( ) (4)對(duì)角線相等的四邊形是矩形 ( )(5)對(duì)角線相等且互相垂直的四邊形是矩形 ( )(6)對(duì)角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請(qǐng)?jiān)偬砑右粋€(gè)條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)當(dāng)△ABC滿足AB=AC時(shí),四邊形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四邊形AFBD是矩形.方法總結(jié):本題綜合考查了矩形和全等三角形的判定方法,明確有一個(gè)角是直角的平行四邊形是矩形是解本題的關(guān)鍵.三、板書設(shè)計(jì)矩形的判定對(duì)角線相等的平行四邊形是矩形三個(gè)角是直角的四邊形是矩形有一個(gè)角是直角的平行四邊形是矩形(定義)通過探索與交流,得出矩形的判定定理,使學(xué)生親身經(jīng)歷知識(shí)的發(fā)生過程,并會(huì)運(yùn)用定理解決相關(guān)問題.通過開放式命題,嘗試從不同角度尋求解決問題的方法.通過動(dòng)手實(shí)踐、合作探索、小組交流,培養(yǎng)學(xué)生的邏輯推理能力.
1. _____________________________________________2. _____________________________________________你會(huì)計(jì)算菱形的周長(zhǎng)嗎?三、例題精講例1.課本3頁(yè)例1例2.已知:在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,E、F、G、H分別是菱形ABCD各邊的中點(diǎn),求證:OE=OF=OG=OH.四、課堂檢測(cè):1.已知四邊形ABCD是菱形,O是兩條對(duì)角線的交點(diǎn),AC=8cm,DB=6cm,菱形的邊長(zhǎng)是________cm.2.菱形ABCD的周長(zhǎng)為40cm,兩條對(duì)角線AC:BD=4:3,那么對(duì)角線AC=______cm,BD=______cm.3.若菱形的邊長(zhǎng)等于一條對(duì)角線的長(zhǎng),則它的一組鄰角的度數(shù)分別為 4.已知菱形的面積為30平方厘米,如果一條對(duì)角線長(zhǎng)為12厘米,則別一條對(duì)角線長(zhǎng)為________厘米.5.菱形的兩條對(duì)角線把菱形分成全等的直角三角形的個(gè)數(shù)是( ).(A)1個(gè) (B)2個(gè) (C)3個(gè) (D)4個(gè)6.在菱形ABCD中,CE⊥AB,E為垂足,BC=2,BE=1,求菱形的周長(zhǎng)和面積
方法三:一個(gè)同學(xué)先畫兩條等長(zhǎng)的線段AB、AD,然后分別以B、D為圓心,AB為半徑畫弧,得到兩弧的交點(diǎn)C,連接BC、CD,就得到了一個(gè)四邊形,猜一猜,這是什么四邊形?請(qǐng)你畫一畫。通過探究,得到: 的四邊形是菱形。證明上述結(jié)論:三、例題鞏固課本6頁(yè)例2 四、課堂檢測(cè)1、下列判別錯(cuò)誤的是( )A.對(duì)角線互相垂直,平分的四邊形是菱形. B、對(duì)角線互相垂直的平行四邊形是菱形C.有一條對(duì)角線平分一組對(duì)角的四邊形是菱形. D.鄰邊相等的平行四邊形是菱形.2、下列條件中,可以判定一個(gè)四邊形是菱形的是( )A.兩條對(duì)角線相等 B.兩條對(duì)角線互相垂直C.兩條對(duì)角線相等且垂直 D.兩條對(duì)角線互相垂直平分3、要判斷一個(gè)四邊形是菱形,可以首先判斷它是一個(gè)平行四邊形,然后再判定這個(gè)四邊形的一組__________或兩條對(duì)角線__________.4、已知:如圖 ABCD的對(duì)角線AC的垂直平分線與邊AD、BC分別交于E、F求證:四邊形AFCE是菱形
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點(diǎn),∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長(zhǎng)為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個(gè)四邊形是菱形時(shí),要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個(gè)四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計(jì)菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對(duì)角線互相垂直的平行四邊形是菱形對(duì)角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進(jìn)一步提高學(xué)生的推理論證能力,體會(huì)證明過程中所運(yùn)用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力及邏輯思維能力.
(2)如果對(duì)應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時(shí),能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對(duì)應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個(gè)矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因?yàn)榫匦蔚乃膫€(gè)角均是直角,所以在有關(guān)矩形相似的問題中,只需看對(duì)應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長(zhǎng)度 .27.1-6教師活動(dòng):教師出示例題,提出問題;學(xué)生活動(dòng):學(xué)生通過例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長(zhǎng)度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長(zhǎng)度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語(yǔ)言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁(yè)習(xí)題4.4
4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁(yè)的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無(wú)線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說明理由.
我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).
預(yù)設(shè) 示例:(1)斯科特,寒冷的冰雪雖然凍住了你的身體,但它卻凍不住你那高尚無(wú)比的靈魂。(2)威爾遜博士,兇猛的暴風(fēng)雪只是帶走了你的身軀,卻沒有帶走你那熱愛科學(xué)、無(wú)私奉獻(xiàn)的精神和對(duì)祖國(guó)的那份深沉的愛。2.以史明鑒,暢寫啟示。(1)暢寫啟示。師:作者在課文結(jié)尾滿懷深情地寫道:“一個(gè)人雖然在同不可戰(zhàn)勝的厄運(yùn)的搏斗中毀滅了自己,但他的心靈卻因此變得無(wú)比高尚。所有這些在一切時(shí)代都是最偉大的悲劇。”聯(lián)系實(shí)際,說說你所知道的“偉大的悲劇式”的人物或事件,這些人物或事件對(duì)你有什么啟示?把自己的想法寫出來。(2)引導(dǎo)交流?!皞ゴ蟮谋瘎∈健钡娜宋锘蚴录捌鋯⑹荆菏纠唬好绹?guó)的航天飛機(jī)“挑戰(zhàn)者號(hào)”在升空約72秒后突然爆炸,機(jī)上7名宇航員全部罹難。
2.明確順序,整合信息(1)根據(jù)文章描寫的大雁歸來的旅程,可以看出本文是按什么說明順序來寫的?提示:抓住時(shí)間詞、空間詞、事物的發(fā)展變化的語(yǔ)句來理清結(jié)構(gòu),判斷說明順序。預(yù)設(shè) 本文大致是按時(shí)間順序來寫的。(2)大雁的行為是如此豐富,作者的觀察是這樣細(xì)致,請(qǐng)同學(xué)們分別按不同角度把找到的有關(guān)大雁行為的信息分類,看看能發(fā)現(xiàn)什么。自讀任務(wù)二將找到的有關(guān)大雁行為的信息,按旅程遠(yuǎn)近、棲息地、組隊(duì)、覓食、“集會(huì)”與鳴叫等進(jìn)行分類整理。整理后,你發(fā)現(xiàn)了什么?(小組任選一個(gè)方面,分類整理,全班交流)預(yù)設(shè) 示例:旅程遠(yuǎn)近——直線飛行200英里——堅(jiān)強(qiáng)、守信;棲息地——沼澤地、池塘邊——充滿靈性;組隊(duì)、覓食、“集會(huì)”與鳴叫等——具有團(tuán)結(jié)精神,互相關(guān)愛?!驹O(shè)計(jì)意圖】本環(huán)節(jié)學(xué)生自主閱讀,獲取信息,把握文章寫作的順序;然后整合歸納信息,進(jìn)而激發(fā)學(xué)生探討大雁的興趣,為后面深入閱讀做鋪墊。
【設(shè)計(jì)意圖】學(xué)習(xí)事理說明文,要讓學(xué)生在自主歸納的過程中,初步感知事理說明文說明“事理”這一基本特點(diǎn),把握事理說明文和事物說明文的不同之處。引導(dǎo)學(xué)生通過學(xué)習(xí)課文,對(duì)科學(xué)方法產(chǎn)生自己的體會(huì),并運(yùn)用到自己的思考中。四、總結(jié)存儲(chǔ)1.教師小結(jié)本文是一篇事理說明文,作者把一門科學(xué)——物候?qū)W介紹得淺顯易懂,饒有趣味。全文采用邏輯順序說明,思路清晰明了:描述物候現(xiàn)象——做出科學(xué)解釋——追究因果關(guān)系——闡述研究意義。這種從現(xiàn)象到本質(zhì)的認(rèn)識(shí)方法和行文思路值得我們學(xué)習(xí)。本文語(yǔ)言嚴(yán)謹(jǐn)而生動(dòng),兼具說明的科學(xué)性和生動(dòng)性,是一篇極有價(jià)值的科普文,是科學(xué)家竺可楨科學(xué)精神和科學(xué)思想的具體體現(xiàn)。文章啟發(fā)我們:科學(xué)距離我們并不遙遠(yuǎn),就在我們的身邊,而想要探索它,就要有科學(xué)精神,擴(kuò)大科學(xué)知識(shí)儲(chǔ)備,掌握科學(xué)方法,勇于探索科學(xué)奧秘。
(二)舉報(bào)意識(shí)亟待提高。目前,部分公司負(fù)責(zé)人對(duì)安全生產(chǎn)舉報(bào)工作的理解和認(rèn)識(shí)不足,積極性不高、主動(dòng)性不強(qiáng),不能擺正安全生產(chǎn)舉報(bào)工作和經(jīng)濟(jì)效益的關(guān)系,安全生產(chǎn)舉報(bào)制度不健全,安全培訓(xùn)教育工作不到位,從業(yè)人員缺乏安全生產(chǎn)舉報(bào)意識(shí),發(fā)現(xiàn)問題力度不夠。三、下步打算(一)強(qiáng)化專項(xiàng)行動(dòng),鞏固成效。我鎮(zhèn)將一如既往的把安全生產(chǎn)工作放在首要位置,及時(shí)對(duì)安全生產(chǎn)舉報(bào)工作中發(fā)現(xiàn)的問題整改“回頭看”,強(qiáng)化問題隱患動(dòng)態(tài)清零、閉環(huán)管理,保障人民群眾生命財(cái)產(chǎn)安全,為我鎮(zhèn)安全生產(chǎn)工作的進(jìn)一步發(fā)展保駕護(hù)航。(二)持續(xù)推進(jìn)工作,增強(qiáng)力度。我鎮(zhèn)將持續(xù)以安全生產(chǎn)舉報(bào)工作為契機(jī),全面梳理、分析隱患問題,扎實(shí)推進(jìn)安全生產(chǎn)風(fēng)險(xiǎn)管控工作,引導(dǎo)發(fā)揮各部門各行業(yè)的工作積極性,保持良好的工作態(tài)勢(shì),加強(qiáng)各行業(yè)領(lǐng)域安全風(fēng)險(xiǎn)管控,營(yíng)造安全生產(chǎn)管控到位、監(jiān)管有效的良好局面。