1. 感受樂曲中A B C 三個(gè)音樂主題的變化, 聽辨各段主題曲調(diào)的出現(xiàn)順序,提高音樂記憶能力?! ?. 聽辨每段旋律的主奏樂器,區(qū)別三種樂器的音色和演奏方法, 啟發(fā)學(xué)生想象各自代表的音樂形象?! ≌f重點(diǎn) 1. 聽辨三段旋律出現(xiàn)的順序?! ?. 感受三種樂器(笛子、小提琴、吉他)不同的音色 說難點(diǎn) 樂曲中三段旋律的主奏樂器依次出現(xiàn)的順序 教具準(zhǔn)備 鋼琴、課件、吉他、小提琴、笛子、錄音機(jī)、卡片若干 說教法學(xué)法:本課主要運(yùn)用教法是:師生互動法,情景感化法,趣味節(jié)奏法 本課主要運(yùn)用的學(xué)法是:自主體驗(yàn)法
【教學(xué)目標(biāo)】根據(jù)課程標(biāo)準(zhǔn)的要求,結(jié)合魯迅雜文的特點(diǎn)以及學(xué)生的實(shí)際情況,制定如下目標(biāo):⑴知識與技能目標(biāo):把握文章思路、結(jié)構(gòu)和觀點(diǎn);揣摩魯迅雜文犀利、幽默、詼諧的語言風(fēng)格。⑵過程與方法目標(biāo):學(xué)習(xí)運(yùn)用因果論證和比喻論證的寫作手法。⑶情感態(tài)度及價(jià)值觀目標(biāo):正確對待中外文化遺產(chǎn),樹立辯證唯物主義和歷史唯物主義的觀點(diǎn)?!窘虒W(xué)重難點(diǎn)】根據(jù)教學(xué)目標(biāo)和學(xué)生實(shí)情,確定教學(xué)重點(diǎn)如:學(xué)習(xí)因果論證的寫作方法,體會作者推理的邏輯性;揣摩魯迅雜文犀利、幽默、詼諧的語言風(fēng)格。確定教學(xué)難點(diǎn)如:學(xué)習(xí)掌握比喻論證的方法;明確為什么要實(shí)行“拿來主義”,著重認(rèn)識送去主義的實(shí)質(zhì)和危害。二、教學(xué)方法教學(xué)應(yīng)堅(jiān)持“以學(xué)生為主體”的原則,盡可能發(fā)揮學(xué)生學(xué)習(xí)的能動性和主動性,培養(yǎng)學(xué)生獨(dú)立思考的能力,調(diào)動學(xué)生學(xué)習(xí)積極性,因此本文采用“疑問教學(xué)法”相對合適。
課程:數(shù)學(xué)課題: 3.1.1函數(shù)的概念課型:講授課課時(shí):2課時(shí)授課班級:2015級南口班授課時(shí)間:2016年3月1日授課地點(diǎn):南口校區(qū)教 學(xué) 目 標(biāo)知識目標(biāo)1.能用函數(shù)語言描述圖像、解析式中自變量與函數(shù)值的依賴關(guān)系; 2.會計(jì)算函數(shù)的定義域,理解值域的含義 3.會用語言表述自變量與函數(shù)值間的對應(yīng)關(guān)系能力目標(biāo)通過對實(shí)例的分析,培養(yǎng)學(xué)生的觀察能力,抽象概括及邏輯思維能力 通過計(jì)算函數(shù)的定義域,培養(yǎng)學(xué)生的計(jì)算能力素養(yǎng)目標(biāo)函數(shù)概念的思想蘊(yùn)含了很多數(shù)學(xué)思維,也滲透生活中及其他學(xué)科范圍內(nèi),通過學(xué)習(xí)使學(xué)生認(rèn)同函數(shù)的抽象性。教學(xué)重 點(diǎn)理解函數(shù)的概念教學(xué)難 點(diǎn)判斷兩個(gè)函數(shù)是否相同教學(xué)方 法引導(dǎo)啟發(fā),講練結(jié)合教學(xué)資 源演示文稿板 書 設(shè) 計(jì)3.1函數(shù)的概念 設(shè)集合A、B為非空數(shù)集,對于確定的對 應(yīng)法則f下,在集合A中取定任意一個(gè)數(shù)x, 在集合B中都有唯一確定的數(shù)f(x)與之相 對應(yīng),則稱f:A→B為集合A到集合B的一 個(gè)函數(shù). 記作:y=f(x),x∈A X叫自變量,y叫函數(shù)值,集合A叫函數(shù)的 定義域,所有函數(shù)值組成的集合叫值域。
課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實(shí)際生活中常見問題,結(jié)合中專學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個(gè)領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時(shí),形成一種意識,即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時(shí)深化學(xué)生對函數(shù)概念的理解和認(rèn)識,也為接下來學(xué)習(xí)指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問題入手,求得分段函數(shù)此部分知識以學(xué)生生活常識為背景,可以引導(dǎo)學(xué)生分析得出。
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時(shí),一定要把整個(gè)負(fù)數(shù)和分?jǐn)?shù)用小括號括起來)三.計(jì)算:①(-2) ,②-2 ,③(- ) ,④ (叫4個(gè)學(xué)生上臺板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個(gè)相同因數(shù)積的運(yùn)算,可以運(yùn)用有理數(shù)乘方法則進(jìn)行符號的確定和冪的求值.乘方的含義:①表示一種運(yùn)算;②表示運(yùn)算的結(jié)果.
由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點(diǎn)坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計(jì)1.二元一次方程組的解是對應(yīng)的兩條直線的交點(diǎn)坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個(gè)方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個(gè)函數(shù)的圖象;(3)觀察圖象,找出交點(diǎn)的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進(jìn)一步揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點(diǎn)之間的對應(yīng)關(guān)系.進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識,充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
方程有兩個(gè)不相等的實(shí)數(shù)根.綜上所述,m=3.易錯(cuò)提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗(yàn)算,字母m的取值必須使判別式大于0,這一點(diǎn)很容易被忽略.三、板書設(shè)計(jì)一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個(gè)實(shí)數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗(yàn)證以及演繹證明.通過觀察、實(shí)踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨(dú)立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵學(xué)生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.
3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的兩個(gè)根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個(gè)解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個(gè)根是2,求它的另一個(gè)根及 的值。(3)不解方程,求一 元二次方程 兩個(gè)根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個(gè)根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個(gè)根是1,求它的另一個(gè)根及 的值。2、設(shè) 是方程 的兩個(gè)根,不解方程,求下列各式的值。① ;② 3、求一個(gè)一元次方程,使它的兩 個(gè)根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時(shí)彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時(shí),彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時(shí)彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報(bào),近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時(shí)間t(分)之間的關(guān)系.當(dāng)時(shí)間t等于多少分鐘時(shí),我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實(shí)際問題時(shí)從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式: ;2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b,進(jìn)而得到一次函數(shù)的表達(dá)式.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當(dāng)m=6時(shí),原式=06-1+6=5;(2)當(dāng)m=-6時(shí),原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進(jìn)行計(jì)算.探究點(diǎn)三:有理數(shù)乘法的應(yīng)用性問題小紅家春天粉刷房間,雇用了5個(gè)工人,干了3天完成;用了某種涂料150升,費(fèi)用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時(shí),有以下幾種方案:方案一:按工算,每個(gè)工100元;(1個(gè)工人干1天是一個(gè)工);方案二:按涂料費(fèi)用算,涂料費(fèi)用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計(jì)算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計(jì)算出結(jié)果,比較得出最省的付錢方案.
討論歸納,總結(jié)出多個(gè)有理數(shù)相乘的規(guī)律:幾個(gè)不等于0的因數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定。當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號為正。只要有一個(gè)因數(shù)為0,積就為0。(2)幾個(gè)不等于0的因數(shù)相乘時(shí),積的絕對值是多少?(生:積的絕對值是這幾個(gè)因數(shù)的絕對值的乘積.)例2、計(jì)算:(1) ;(2) 分析:(1)有多個(gè)不為零的有理數(shù)相乘時(shí),可以先確定積的符號,再把絕對值相乘;(2)若其中有一個(gè)因數(shù)為0,則積為0。解:(1) = (2) =0練習(xí)(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個(gè)整數(shù)的積,有多少種可能性?把它們?nèi)繉懗鰜?。(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會了什么?(1)有理數(shù)的乘法法則。(2)多個(gè)不等于0的有理數(shù)相乘,積的符號由負(fù)因數(shù)的個(gè)數(shù)決定。(3)幾個(gè)數(shù)相乘時(shí),如果有一個(gè)因數(shù)是0,則積就為0。(4)乘積是1的兩個(gè)有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題
方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進(jìn)行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運(yùn)算法則并根據(jù)題意準(zhǔn)確列出算式也是解題的關(guān)鍵.三、板書設(shè)計(jì)加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個(gè)數(shù)同0相加,仍得這個(gè)數(shù).本課時(shí)利用情境教學(xué)、解決問題等方法進(jìn)行教學(xué),使學(xué)生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進(jìn)入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)變?yōu)橹鲃酉雽W(xué).在本節(jié)教學(xué)中,要堅(jiān)持以學(xué)生為主體,教師為主導(dǎo),充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
師生共同歸納法則2、異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計(jì)增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現(xiàn)和為零的情況?提示:可以聯(lián)系倉庫進(jìn)出貨的具體情形。生6:如星期一倉庫進(jìn)貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個(gè)數(shù)相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數(shù)相加的法則。一般地還有:一個(gè)數(shù)同零相加,仍得這個(gè)數(shù)。小結(jié):運(yùn)算關(guān)鍵:先分類運(yùn)算步驟:先確定符號,再計(jì)算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計(jì)算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學(xué)生板演,讓學(xué)生批改并說明理由。
一、舊知回顧1、有理數(shù)的加法法則:(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。(2)絕對值不等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。(3)互為相反數(shù)的兩數(shù)相加得零。(4)一個(gè)數(shù)與零相加,仍得這個(gè)數(shù)。注意:一個(gè)有理數(shù)由符號和絕對值兩部分組成,進(jìn)行加法運(yùn)算時(shí),應(yīng)注意確定和的符號和絕對值.
解析:∵ab>0,根據(jù)“兩數(shù)相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負(fù)數(shù).故選D.方法總結(jié):此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側(cè)重點(diǎn)在于考查學(xué)生的邏輯推理能力.讓學(xué)生深刻理解除法是乘法的逆運(yùn)算,對學(xué)好本節(jié)內(nèi)容有比較好的作用.教學(xué)設(shè)計(jì)可以采用課本的引例作為探究除法法則的過程.讓學(xué)生自己探索并總結(jié)除法法則,同時(shí)也讓學(xué)生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運(yùn)算方法:(1)在除式的項(xiàng)和數(shù)字不復(fù)雜的情況下直接運(yùn)用除法法則求解.(2)在多個(gè)有理數(shù)進(jìn)行除法運(yùn)算,或者是乘、除混合運(yùn)算時(shí)應(yīng)該把除法轉(zhuǎn)化為乘法,然后統(tǒng)一用乘法的運(yùn)算律解決問題.
(三)精讀感悟1.獨(dú)立閱讀,自主探究。出示中心問題:這是一個(gè)---- 的小姑娘。?是從哪些地方看出來的?找出有關(guān)語句并體會著讀一讀。這一環(huán)節(jié)充分體現(xiàn)了學(xué)生“自主、合作、探究”的學(xué)習(xí)方式。教師為學(xué)生提供了寬廣的學(xué)習(xí)空間。學(xué)生圍繞中心問題,自己確定重點(diǎn)研究的內(nèi)容,自由選擇最適合自己的學(xué)習(xí)方式,在課文中攝取相關(guān)的語言信息。預(yù)設(shè)1這是一個(gè)勤勞的小姑娘,從第一小節(jié)看出。預(yù)設(shè)2這是一個(gè)善良的小姑娘,第二小節(jié)看出。引導(dǎo)學(xué)生找出相關(guān)的語句用自己的話說一說。設(shè)計(jì)意圖1用尊重學(xué)生獨(dú)特的見解和感受。讓學(xué)生去關(guān)心文本中的人物,鼓勵他們發(fā)表自己的想法,在品味中感受小姑娘的勤勞、善良故事表演情感升華2、學(xué)唱歌曲。幫助學(xué)生記憶課文。3、學(xué)完本課文后提問你最想說的一句話什么?你想對小姑娘說什么?達(dá)成情感目標(biāo)。(四)達(dá)標(biāo)測評(3)讀一讀,然后用“像”寫句話。1.她采的蘑菇最多,多得像那星星數(shù)不清。2.她采的蘑菇最大,大得像那小傘裝滿筐。
請記?。簺_動是魔鬼打架斗毆講得輕一點(diǎn)是一種是破壞學(xué)校的正常秩序,嚴(yán)重違反學(xué)校紀(jì)律的行為,講得重一點(diǎn)就是一種擾亂社會治安的違法行為。請認(rèn)識打架斗毆的危害:1.觸犯法律《中華人民共和國治安管理處罰法》第四十三條規(guī)定,毆打他人的,或者故意傷害他人身體的,處五日以上十日以下拘留,并處二百元以上五百元以下罰款;情節(jié)較輕的,處五日以下拘留或者五百元以下罰款。有下列情形之一的,處十日以上十五日以下拘留,并處五百元以上一千元以下罰款:(一)結(jié)伙毆打、傷害他人的;(三)多次毆打、傷害他人或者一次毆打、傷害多人的。除承擔(dān)上述行政責(zé)任外,還應(yīng)當(dāng)賠償受害人的損失。造成輕傷以上損害后果的還應(yīng)當(dāng)承擔(dān)刑事責(zé)任?!吨腥A人民共和國刑法》第二百三十二條規(guī)定“故意傷害他人身體的,處三年以下有期徒刑、拘役或管制……致人重傷的,處三年以上十年以下有期徒刑;致人死亡或者以特別殘忍手段致人重傷造成嚴(yán)重殘疾的,處十年以上有期徒刑、無期徒刑或者死刑?!?/p>
“志人小說”中的“志人”這個(gè)名稱,是魯迅從“志怪”推衍出來的。“志人”這個(gè)名目,為魯迅《中國小說的歷史的變遷》所設(shè)立,與“志怪”相對而言?!吨袊≌f史略》又說:“記人間事者已甚古,列御寇韓非皆有錄載,惟其所以錄載者,列在用以喻道,韓在儲以論政。若為賞心而作,則實(shí)萌芽于魏而盛大于晉,雖不免追隨俗尚,或供揣摩,然要為遠(yuǎn)實(shí)用而近娛樂矣。”這里提出的觀點(diǎn)很重要,即所謂志人小說,其寫作目的,雖仍有記錄史實(shí)、供人揣摩的考慮,但欣賞和娛樂的特點(diǎn)已經(jīng)很強(qiáng)。志人小說在數(shù)量上僅次于志怪小說,是在品藻人物的社會風(fēng)氣影響之下形成的。魏晉南北朝的志人小說的藝術(shù)特點(diǎn)有以下四個(gè)方面:一是以真人真事為描寫對象;二是以“叢殘小語”、尺幅短書為主要形式;三是善于運(yùn)用典型細(xì)節(jié)描寫和對比襯托手法,突出刻畫人物某一方面的性格特征;四是語言簡練樸素,生動優(yōu)美,言約旨豐。這些藝術(shù)特點(diǎn)對后世小說產(chǎn)生了很大影響。
集合的基本運(yùn)算(1) 一、教學(xué)目標(biāo) 1、 知識與技能 (1)理解并集和交集的含義,會求兩個(gè)簡單集合的交集與并集。 (2)能夠使用Venn圖表達(dá)兩個(gè)集合的運(yùn)算,體會直觀圖像對抽象概念理解的作用。 2、過程與方法 (1)進(jìn)一步體會類比的作用 。 (2) 進(jìn)一步樹立數(shù)形結(jié)合的思想。 3、情感態(tài)度與價(jià)值觀 集合作為一種數(shù)學(xué)語言,讓學(xué)生體會數(shù)學(xué)符號化表示問題的簡潔美。 二、教學(xué)重點(diǎn)與難點(diǎn) 教學(xué)重點(diǎn):并集與交集的含義 。 教學(xué)難點(diǎn):理解并集與交集的概念,符號之間的區(qū)別與聯(lián)系。