學生在觀察和討論后,由師生合作,歸納出中心對稱的性質:(1)關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分;(2)關于中心對稱的兩個圖形是全等圖形.讓學生嘗試自己證明△ABC與△A′B′C′全等,然后在教師的引導下相互交流。接著,對“軸對稱”和“中心對稱”的概念進行比較,我采用列表格的方式,從三個方面分別讓學生去填,意圖讓學生把新學的知識及時納入到已學的知識體系中去。4、靈活運用體會內涵1)首先講授例1。(1)選擇點O為對稱中心,畫出點A關于點O的對稱點A′;(2)選擇點O為對稱中心,畫出線段AB關于點O的對稱線段A′B′.(3)已知四邊形ABCD和O點,畫出四邊形ABCD關于O點的對稱圖形。在老師的引導下,共同完成作圖,并規(guī)范畫圖方法:要畫一個多邊形關于已知點的對稱圖形,只要畫出這個多邊形的各個頂點關于已知點的對稱點,再順次連接各點即可。在本次活動中,意圖利用中心對稱的性質進行作圖,加強對中心對稱性質的理解。
一、說教材:等腰三角形是北師大版初中八年級下冊數(shù)學教材第一章第一節(jié)的教學內容,本節(jié)是軸對稱圖形的應用,是研究等腰三角形的開篇。通過本章節(jié)的學習,可以豐富和加深學生對已學圖形的認識,為以后的圖形學習和證明打好基礎。本節(jié)在編排上考慮學生的認知規(guī)律,從學生容易接受的動手操作找規(guī)律開始到幾何畫板的驗證再過渡到幾何證明與應用。根據(jù)課程標準,確定本節(jié)課的目標為:【教學目標】1.知識與能力 理解并掌握等腰三角形的定義,探索等腰三角形的性質;能夠用等腰三角形的知識解決相應的數(shù)學問題.2.過程與方法通過動手操作、動態(tài)演示等方法,培養(yǎng)學生思考探究數(shù)學的能力;通過例題與練習,提高學生添加輔助線解決問題的能力。3.情感、態(tài)度與價值觀 在探索等腰三角形性質的過程中體會軸對稱圖形的美,感受數(shù)學與生活的聯(lián)系;在例題教學中,感受數(shù)學之美;培養(yǎng)學生分析解決問題的能力,使學生養(yǎng)成良好的學習習慣.
1.通過實例體會一元一次不等式組是研究量與量之間關系的重要模型之一。2.了解一元一次不等式組及解集的概念。3.會利用數(shù)軸解較簡單的一元一次不等式組。4.培養(yǎng)學生分析、解決實際問題的能力。5.通過實際問題的解決,體會數(shù)學知識在生活中的應用,激發(fā)學生的學習興趣。能在解決問題過程中勤于思考、樂于探究,體驗解決問題策略的多樣性,體驗數(shù)學的價值。四、教學重、難點分析教學重點:1.理解有關不等式組的概念.2.會解由兩個一元一次不等式組成的不等式組.教學難點:在數(shù)軸上確定解集.五、教學手段分析本節(jié)課采用多媒體教學,利用多媒體教學信息容量大、操作簡單、形象生動、反饋及時等優(yōu)點,直觀地展示教學內容,這樣不但可以提高學習效率和質量,而且容易激發(fā)學生學習的興趣,調動積極性。
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內容,是進一步學習分式方程、反比例函數(shù)以及其它數(shù)學知識的基礎,同時也是學習物理、化學等學科不可缺少的工具。與其它數(shù)學知識一樣,它在實際生活中有著廣泛的應用。學習分式的加減法并熟練地進行運算是學好分式運算的關鍵,為學生綜合運用多種運算法則拓寬了空間,有利于學生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學難度有所增加,學生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標和重點、難點如下:(一)說教學目標:1.知識與技能目標:理解并掌握異分母分式加減法的法則;經歷異分母分式的加減運算和通分的過程,訓練學生的分式運算能力,培養(yǎng)學生在學習中轉化未知問題為已知問題的能力;進一步通過實例發(fā)展學生的符號感。
注意:平行四邊形中對邊是指無公共點的邊,對角是指不相鄰的角,鄰邊是指有公共端點的邊,鄰角是指有一條公共邊的兩個角.而三角形對邊是指一個角的對邊,對角是指一條邊的對角.(教學時要結合圖形,讓學生認識清楚)設計意圖:通過觀察圖片和回顧以前的知識,使學生由感性認識上升到理性認識。通過描述平行四邊形的特點和定義,也培養(yǎng)了學生的語言表達能力。同時也滲透了一些由實際問題轉化為數(shù)學問題的“轉化”的數(shù)學思想。(三)、引導實驗探索新知【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質和兩組對邊分別平行外,還有什么特殊的性質呢?我們一起來探究一下.動手操作并思考:讓學生根據(jù)平行四邊形的定義畫一個一個平行四邊形,觀察這個四邊形,它除具有四邊形的性質和兩組對邊分別平行外以,它的邊和角之間有什么關系?度量一下,是不是和你猜想的一致?
1、數(shù)數(shù)格子,認清方向(完成想想做做第1題)設計意圖:本題在于讓學生認清平移的方向和距離,感受平移的不同方法。在教學中,讓學生自己獨立思考完成,自由發(fā)言。鼓勵學生說出不同的平移方法。2、小試牛刀(完成想想做做第2題)設計意圖:本題主要是讓學生掌握按要求畫平移后的圖形。這是本節(jié)課的難點。在教學中,先讓學生獨立畫圖,教師巡視作圖情況,對有困難的學生給予指導。在學生完成作圖后,投影部分學生的作品,交流平移的過程與方法。最后在多媒體課件上展示畫法。.3、平移的運用(“想想做做”第3題)設計意圖:本題在于使學生學會運用平移的知識畫平行線,體會平移的價值。(四)課堂小結,升華提高提問:今天你有哪些收獲?設計意圖:以問題為載體,引領學生對本節(jié)課的歸來總結。讓學生再次理解圖形的斜向平移可轉換成橫向平移和豎向平移。
情景感知概括運用設疑誘導動手操作合作交流嘗試活動啟發(fā)引導類比發(fā)現(xiàn)演練結合觀察分析自主探索問題討論利用嘗試活動“我來當老師!”給學生提供設計問題的機會,培養(yǎng)他們實事求是的科學態(tài)度,勇于質疑、敢于創(chuàng)新的良好習慣及數(shù)學應用能力。例1、根據(jù)因式分解的概念,判斷下列由左邊到右邊的變形,哪些是因式分解,哪些不是,為什么?通過羅列一些似是而非、容易產生錯誤的對象讓學生辨析,促使他們認識概念的本質、確定概念的外延,從而形成良好的認知結構。例2:解答下列問題:(1)993-99能被99整除嗎?能被98整除嗎?能被100整除嗎?(2)求代數(shù)式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。讓學生進一步體會用分解因式解決相關問題的簡捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),則m=,n=。
[設計意圖]節(jié)環(huán)節(jié)的設置是為了使學生在掌握不等式性質的基礎之上,加以拓展的作業(yè),使課程的內容不但能滿足全體學生需求,更能滿足學有余力的學生得到更大收獲,從數(shù)軸上獲取信息來完成填空,從而體現(xiàn)數(shù)形結合的思想,學生通過參與活動,體會挑戰(zhàn)成功的喜悅,并且他們的求勝心理得到了滿足,沉醉在知識給他們帶來的快感中完成本節(jié)課的學習,(六)課堂小結最后,凱旋歸來話收獲:通過本節(jié)課的學習,你收獲到了什么?學生們都積極的舉手回答,說出了各種各樣的收獲,比如:1、學會了不等式的三條基本性質2、學會了用字母來表示不等式的性質3、學生不等式與等式的區(qū)別等等;學生在回答的時候,老師加以評價和表揚并展示主要內容;這里教師要再次強調,特別注意性質3,兩邊同乘(或除以)一個負數(shù)時,不等號的方向要改變,數(shù)學思想的方法是數(shù)學的靈魂,這節(jié)課我們體驗了三種數(shù)學思想,一是類比的思想,二是數(shù)形結合的思想,三是分類討論的思想,
2、測量。各個組的成員根據(jù)上面的設計方案在小組長的帶領下到操場測量相關數(shù)據(jù)。比一比,哪組最先測量完并回到教室?(二)根據(jù)測量結果計算相關物體高度。時間為2分鐘。要求:獨立計算,并填寫好實驗報告上。(三)展示測量結果。時間為3分鐘。各組都將自己計算的結果報告,看哪些同學計算準確些?(四)整理實驗報告,上交作為作業(yè)。此活動主要是讓學生通過動手實踐,分工合作,近一步理解三角函數(shù)知識,以及從中體會學習數(shù)學的重要性,培養(yǎng)學生學習數(shù)學的興趣和激情,增強團隊意識。四、小結:本節(jié)課你有哪些收獲?你的疑惑是什么?(2分鐘)1、 知識上:2、 思想方法上:五、板書設計1、目標展示在小黑板上2、自主學習的問題展示在小黑板上3、學生設計的方案示意圖在小組展示板上展示
二、教法分析為了讓學生較好掌握本課內容,本節(jié)課主要采用觀察法、討論法等教學方法,通過創(chuàng)設情境,使學生由淺到深,由易到難分層次對本節(jié)課內容進行掌握。三、學法分析本課要求學生通過自主地觀察、討論、反思來參與學習,認識和理解數(shù)學知識,學會發(fā)現(xiàn)問題并嘗試解決問題,在學習活動中進一步提升自己的能力。四、教學過程創(chuàng)設問題情景,引入新課活動內容:尋找不等的量 課本例一,例二設計目的:學生體會在現(xiàn)實生活中除了存在許多等量關系外,更多的是不等關系的存在,并通過感受生活中的大量不等關系,初步體會不等式是刻畫量與量之間關系的重要數(shù)學模型。經歷由具體實例建立不等式模型的過程,進一步發(fā)展學生的符號感與數(shù)學化的能力。課本例四,例五設計目的:培養(yǎng)學生數(shù)學抽象能力,提高把實際問題轉化為數(shù)學問題的能力。六.課堂小結體會 常量與常量間的不等關系變量與常量間的不等關系變量與變量間的不等關系
通過以上例題幫助學生總結出分式乘除法的運算步驟(當分式的分子與分母都是單項式時和當分式的分子、分母中有多項式兩種情況)4、隨堂練習。(約5分鐘)76頁第一題,共3個小題。教學效果:在總結出分式乘除法的運算步驟后,大部分學生能很好的掌握,但是還有些學生忘記運算結果要化成最簡形式,老師要及時提醒學生。 分解因式的知識沒掌握好,將會影響到分式的運算,所以有的學生有必要復習和鞏固一下分解因式的知識。5、數(shù)學理解(約5分鐘)教材77頁的數(shù)學理解,學生很容易出現(xiàn)像小明那樣的錯誤。但是也很容易找出錯誤的原因。補充例3 計算(xy-x2)÷ ? 教學效果:鞏固分式乘除法法則,掌握分式乘除法混合運算的方法。提醒學生,負號要提到分式前面去。6、課堂小結(約3分鐘)先學生分組小結,在全班交流,最后老師總結。
設計意圖:考慮學生的個別差異,分層次布置作業(yè),讓基礎差的學生能夠吃飽,基礎好的學生吃好,使每位學生都感到學有所獲。五、評價分析數(shù)學課程標準指出:學生的數(shù)學學習內容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,而動手實踐、自主探究與合作交流是學生學習數(shù)學的重要方式。本著這一理念,在本課的教學過程中,我嚴格遵循由感性到理性,將數(shù)學知識始終與現(xiàn)實生活中學生熟悉的實際問題相結合,不斷提高他們應用數(shù)學方法分析問題、解決問題的能力。在重視課本基礎知識的基礎上,適當進行拓展延伸,培養(yǎng)學生的創(chuàng)新意識,同時根據(jù)新課程標準的評價理念,在教學過程中,不僅注重學生的參與意識,而且注重學生對待學習的態(tài)度是否積極。課堂中也盡量給學生更多的空間、更多展示自我的機會,讓學生在和諧的氛圍中認識自我、找到自信、體驗成功的樂趣。使學生的主體地位得到充分的體現(xiàn),使教學過程成為一個在發(fā)現(xiàn)在創(chuàng)造的認知過程。
回顧整節(jié)課的設計,我主要著力于以下三個方面:1.關于教材處理:認真處理教材,目的只有一個——為我的學生盡可能多地提供參與活動的機會,在本節(jié)課中主要體現(xiàn)在以下幾點:(1)通過“合成代數(shù)式”、“賦予分式實際意義”兩個活動,激發(fā)興趣,吸引學生參與活動;(2)通過“互舉例子”、“填表探究”兩個活動,鼓勵學生主動參與活動;(3)通過“應用新知”這個環(huán)節(jié),促進學生參與活動。2.關于教與學方法的選擇:我在設計中始終關注:如何精心組織活動,讓學生在豐富的活動中探索、交流與創(chuàng)新,因此我選擇了“引導——發(fā)現(xiàn)教學法”,具體做法如下: (1)用數(shù)、式通性的思想,類比分數(shù),引導學生獨立思考、小組協(xié)作,完成對分式概念及意義的自主建構,突出數(shù)學合情推理能力的養(yǎng)成;(2)加強應用性,通過“應用新知”、“深化拓展”兩個環(huán)節(jié),密切分式與現(xiàn)實生活及其他學科的聯(lián)系,發(fā)展數(shù)學應用意識,突出分式的模型思想。
設計目的:通過學生的反饋練習,使教師能全面了解學生對公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時地進行查缺補漏.但依然有部分同學會出現(xiàn)問題,如對首項出現(xiàn)負號時不能正確處理,此時,需要老師進一步引導.第四環(huán)節(jié) 課堂小結從今天的課程中,你學到了哪些知識?你認為提公因式法與單項式乘多項式有什么關系?怎樣用提公因式法分解因式?設計目的:通過學生的回顧與反思,強化學生對確定公因式的方法及提公因式法的步驟的理解,進一步清楚地了解提公因式法與單項式乘多項式的互逆關系,加深對類比的數(shù)學思想的理解。第五環(huán)節(jié) 當堂檢測把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2設計目的:檢驗學生的目標達成情況,其中第五小題供學有余力的學生選作。第六環(huán)節(jié) 課后反思教學反思
活動四:自主學習,尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫弧?”同桌演示尺規(guī)作圖。最后折紙驗證,使整個學習過程更加嚴謹。我將用下面這個課件給學生展示作圖過程。再次回顧情境,讓學生完成情境中的問題。(三)講練結合,鞏固新知第一個題目是直接運用性質解決問題,比較簡單,面向全體學生。我還設計了第二個題目,想訓練學生審題的能力。(四)課堂小結在學生們共同歸納總結本節(jié)課的過程中,讓學生獲得數(shù)學思考上的提高和感受成功的喜悅并進一步系統(tǒng)地完善本節(jié)課的知識。(五)當堂檢測為了檢測學生學習情況,我設計了當堂檢測。第一個題目,讓學生學會轉化的思想來解決問題;第二個題目練習尺規(guī)作圖。
說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設計意圖:例1是讓學生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數(shù)形結合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結,結合板書,引導學生自我總結,重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題
1、結合具體生活場景,能運用所學的乘法口訣解決簡單的實際問題,通過圖與式的對應,進一步理解乘法的意義。 2、能熟練運用口訣進行計算,提高靈活運用口訣解決實際問題的能力。 3、體會數(shù)學與實際生活的聯(lián)系,培養(yǎng)用數(shù)學的意識,體驗口訣在解決問題中的作用。 運用所學乘法解決簡單的實際問題。 結合實際情景理解乘法的意義。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、談話導入:在前面的學習中,我們認識了乘法,而且還學習了2和5的乘法口訣。這節(jié)課,老師想請同學們用這些跟乘法有關的知識來幫助老師一起解決生活中遇到的問題,一起來看一看吧??鞓沸菹r間到了,學校的大操場突然熱鬧起來了,你們一定非常喜歡課件活動吧!看,操場上同學們有的在玩老鷹捉小雞的游戲,有的在進行乒乓球比賽,有的在跳繩,還有的在踢毽子……真熱鬧啊!
一、教材的地位與作用 本節(jié)主要學習一元一次不等式組及其解集的概念,并要求學生會用數(shù)軸確定解集。它是一元一次不等式的后續(xù)學習,也是一種基本的數(shù)學模型,也為下節(jié)和今后解決實際生產和生活問題奠定了堅實的知識基礎。另外,整個學習的過程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結合的思想,這種數(shù)學思想會一直影響著學生今后數(shù)學的學習。二、學情分析從學生學習的心理基礎和認知特點來說,學生已經學習了一元一次不等式,并能較熟練地解一元一次不等式,能將簡單的實際問題抽象為數(shù)學模型,有一定的數(shù)學化歸能力。但學生將兩個一元一次不等式的解集在同一數(shù)軸上表示會產生一定的困惑。這個年齡段的學生,以感性認識為主,并向理性認知過渡,所以,本節(jié)課的設計是通過學生所熟悉的問題情境,讓學生獨立思考,合作交流,從而引導其自主學習。
1、互逆命題:在兩個命題中,如果第一個命題的條件是第二個命題的 ,而第一個命題的結論是第二個命題的 ,那么這兩個命題互逆命題,如果把其中一個命題叫做原命題,那么另一個命題叫做它的 .2、互逆定理:如果一個定理的逆命題也是 ,那么這個逆命題就是原來定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學習診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).
Ⅵ.活動與探究某種“15選5”的彩票的獲獎號碼是從1~15這15個數(shù)字小選擇5個數(shù)字(可以重復),若彩民所選擇的5個數(shù)字恰與獲獎號碼相同,即可獲得特等獎.小明觀察了最近100期獲獎號碼,發(fā)現(xiàn)其中竟有51期有重號(同一期獲獎號碼有2個或2個以上的數(shù)字相同),66期有連號(同一期獲獎號碼中有2個或2個以上的數(shù)字相鄰).他認為獲獎號碼不應該有這么多重號和連號,獲獎號碼可能不是隨機產生的,有失公允.小明的觀點有道理嗎?重號的概率大約是多少?利用計算器模擬實驗可以估計重號的概率.[過程]兩人組成一個小組,利用計算器產生1~15之間的隨機數(shù).并記錄下來,每產生5個隨機數(shù)為一次實驗,每組做10次實驗,看看有幾次重號和連號.將全班的數(shù)據(jù)匯總集中起來,就可估計出1~15之間的整數(shù)中隨機抽出5個數(shù)出現(xiàn)重號和連號的概率.