四、說教法為了更好地突出本節(jié)課的重點和難點,我采用了以下教法:1、討論法。通過學生的討論讓他們自己總結(jié)歸納出通分的意義和方法。2、借助直觀的演示進行教學,幫助學生理解通分的算理,培養(yǎng)了學生的觀察、分析能力。3、運用口答、多媒體課件等形式的練習,使學生鞏固了所學的知識,使教學得到反饋。 4、循循善誘,啟發(fā)引導學生,鼓勵學生積極發(fā)言,引導學生動口、動腦、動手,逐步掌握新知。五、說學法通過本節(jié)課的學習,使學生學會聯(lián)系舊知識解決新問題,通過對操作演示的觀察、分析,自己總結(jié)歸納出通分的意義和方法,體現(xiàn)了學生的自主。六、說教學過程(一)再現(xiàn)導入通分是在求幾個數(shù)的最小公倍數(shù)和分數(shù)的基本性質(zhì)的基礎上學習的,因此,在新授前我利用多媒體課件,先安排了求兩個數(shù)的最小公倍數(shù)和分數(shù)的基本性質(zhì)、比較分數(shù)的大小的復習。復習第(1)題讓學生回憶了兩個數(shù)是互質(zhì)關系、倍數(shù)關系和一般關系時怎樣求它們的最小公倍數(shù);復習第(2)題讓學生回顧分數(shù)的基本性質(zhì),為通分過程打好基礎。這兩題都分散了教學中的難點。
一.說教材(一)教材內(nèi)容地位作用與學情單式折線統(tǒng)計圖是人教版義務教育課程標準五年級下冊第7單元的內(nèi)容。是在學生之前學習掌握了數(shù)據(jù)收集、整理、描述與分析等簡單基本方法,會用簡單統(tǒng)計表、條形統(tǒng)計圖等方法表示和分析統(tǒng)計數(shù)據(jù)與解決簡單實際問題的基礎上進行教學的;通過折線統(tǒng)計圖的教學,幫助學生了解折線統(tǒng)計圖的含義、特點,并進行簡單的數(shù)據(jù)分析,了解統(tǒng)計在現(xiàn)實生活中的意義和作用,有效構(gòu)建數(shù)據(jù)分析觀念。(二)教學目標基于以上對教材的分析理解和學生生活經(jīng)驗與從具體到抽象的認知規(guī)律,擬將教學目標定位確立為: 1.知識與技能:認識了解單式折線統(tǒng)計圖及其特點和作用,根據(jù)需要用折線統(tǒng)計圖直觀表示統(tǒng)計數(shù)據(jù),并進行簡單的數(shù)據(jù)解釋和分析與預測。 2.過程與方法:經(jīng)歷探究折線統(tǒng)計圖特點與作用的過程,培養(yǎng)發(fā)展學生發(fā)現(xiàn)、提出、分析、解決問題的能力。
2教學目標⒈知識與技能目標了解皮影的相關知識,體會皮影藝術的特點。⒉過程與方法目標學習怎樣去制作剪影,最后怎樣讓剪影動起來,體驗皮影藝人的表演技能。⒊情感與價值觀目標通過對剪影知識的了解和制作剪影,增強學生對中國民間藝術的熱愛,培養(yǎng)學生的創(chuàng)造精神。
四、說教法與學法說教法:情境教學,在例題的教學中創(chuàng)設符合學生生活情境的學習環(huán)境,引導學生投入到學習當中。說學法:自主探索、合作交流的學習方法。學生們通過觀察、比較和交流等學習活動,自主探索小數(shù)大小的比較方法。五、說教學過程(一)復習 1、王老師帶了300元錢去買自行車,一輛自行車的價錢是295元,請問王老師帶的錢夠不夠?(要求學生說出整數(shù)比大小的方法) 2、在下列各數(shù)按從大到小的順序排列,你是怎樣比較的? 999 1000 758 786小結(jié):當整數(shù)位數(shù)不同時,位數(shù)多的那個數(shù)就大。當整數(shù)數(shù)位相同時,從高位開始比較,按數(shù)位順序一位一位地比,哪一位的數(shù)大,那個數(shù)就大,就不再比下一位了。 3、小明帶了14元8角,到自選商場買一支鋼筆,結(jié)果發(fā)現(xiàn)一支鋼筆的價錢是13.50元,那么小明帶的錢夠嗎? (設計意圖:這樣的設計從舊知識導入,可以分散本節(jié)課的教學難點,為學習新知識做好鋪墊。)
尊敬的各位領導、老師:大家下午好!今天我說課的題目是《100以內(nèi)數(shù)的大小比較》,我將從教材、教法學法、教學流程、板書設計、教學反思五個方面來談一談。一、說教材1.教學內(nèi)容這節(jié)課是義務教育課程標準人教版實驗教科書,數(shù)學一年級下冊第四單元《100以內(nèi)數(shù)的認識》中的例5“比較大小”。2.教材分析學生在此之前,已經(jīng)學習了20以內(nèi)各數(shù)的認識及比較大小,這為過渡到本節(jié)課的學習起著鋪墊作用,“做一做”可以幫助學生進一步鞏固比較兩個兩位數(shù)大小的方法。3.教學目標為了實現(xiàn)“人人學有價值的數(shù)學,人人都獲得必須的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展?!蔽掖_定了如下的教學目標:(1)利用現(xiàn)實有趣的情境激發(fā)學生的求知欲、學習數(shù)學的興趣。(2)培養(yǎng)學生觀察、比較、提出問題和解決問題的能力。
(一)復習導入 1.師:我們學過了因數(shù)的有關知識,下面老師就檢驗一下,看你們學得怎么樣?(課件第2張)(1)24的因數(shù)有(1,2,3,4,6,8,12,24),30的因數(shù)有(1,2,3,5,6,10,15,30),24和30的公因數(shù)有(1,2,3,6),它們的最大公因數(shù)是(6)。(2)分數(shù)的分子和分母同時(乘)或(除以)一個(相同的數(shù))(0除外),分數(shù)的大?。ú蛔儯@叫做分數(shù)的基本性質(zhì)。【設計意圖】復習舊知,約分的根據(jù)是分數(shù)的基本性質(zhì),要約成最簡分數(shù),需要分子和分母同時除以它們的最大公因數(shù),所以復習環(huán)節(jié)設計了這兩個知識點的練習,為學習新知識做準備。2.大家一定都喜歡孫悟空吧!你知道孫悟空最大的本事是什么嗎?(72變)這節(jié)課我們就來創(chuàng)造第73變——變分數(shù)?。ǘ┨骄啃轮? 1、探究約分的方法。(1)把化成分子和分母比較小且分數(shù)大小不變的分數(shù)。(課件第4張) 小組討論:你是怎么想的?匯報交流(課件第5張)生1:可以用分子和分母的公因數(shù)(1除外)去除。生2:我用24和30的公因數(shù)2去除,,然后再用12和15的公因數(shù)3去除, 生3:我直接用24和30的最大公因數(shù)6去除。(2)用自己的話說說什么是約分?(課件第6張)生1:把一個分數(shù)化成和它相等,但分子和分母都比較小的分數(shù),叫做約分。
(一)復習舊知,導入新課。師:同學們,上節(jié)課我們認識了體積和體積單位,請你填一填這兩道題,看看你學得怎么樣。(課件第2張)1.常用的體積單位有(立方厘米)、(立方分米)、(立方米),可以分別寫成(cm³) 、(dm³)、 (m³)。2.棱長是1cm的正方體,體積是(1cm³)。3.棱長是1dm的正方體,體積是(1dm³)。4.棱長是1m的正方體,體積是(1m³)?!驹O計意圖】1dm³是多少cm³呢?這節(jié)課我們就來研究一下體積單位間的進率。(板書課題)(二)探究新知1.探究立方分米和立方厘米間的進率:(課件第3張)(1)下圖是一個棱長為1dm的正方體,體積是1dm³。想一想,它的體積是多少立方厘米呢?(2)小組討論,你是怎樣想的?(3)匯報交流:(課件第4張)生1:如果把它的棱長看作是10cm,可以把它切成1000塊1cm³的小正方體。10×10×10=1000.生2:它的底面積是1dm²,就是100cm²,100×10=1000,一共是1000cm³。1dm³=1000cm³【設計意圖】用小組討論的方式,讓學生從討論的過程中找到解決問題的方法,培養(yǎng)學生的語言表達能力、思維能力。2.你知道1m³等于多少立方分米嗎?(課件第5張)生1:把棱長是1m的正方體,看作棱長是10dm的正方體,10×10×10=1000dm³。1m³=1000dm³。 生2:棱長是1m的正方體,底面積是1m²,就是100dm²,100×10=1000dm³,一共是1000dm³。生3:1m³=1000dm³ 3.整理計量單位之間的進率。(1)小組討論:到現(xiàn)在為止,我們已經(jīng)學習了哪些計量單位?請整理在表中。
1. 知識與技能 通過學生活動,幫助學生理解三角形按角分類的方法,掌握直角三角形、銳角三角形、鈍角三角形的概念;知道等腰三角形、等邊三角形。培養(yǎng)學生觀察,動手操作和抽象概括的能力;發(fā)展空間觀念。2.過程與方法 使學生經(jīng)歷觀察、操作、比較、概括等過程,在分類中體會每一類三角形角的特點;發(fā)現(xiàn)邊的特點。滲透集合思想。3.情感態(tài)度與價值觀 激發(fā)學生的主動參與意識,使學生感受到成功的喜悅,更增強學習興趣?!窘虒W重點】 直角三角形、銳角三角形、鈍角三角形的概念?!窘虒W難點】發(fā)現(xiàn)三角形角的特點?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】多媒體【課時安排】 1課時【教學過程】(一)復習導入 師:說一說下面的角各是什么角。
2.過程與方法 通過研究三角形、四邊形的內(nèi)角和,讓學生經(jīng)歷觀察、思考、推理、歸納的過程,滲透猜想--驗證--結(jié)論--運用的學習方法,培養(yǎng)學生動手操作和合作交流的能力,增強學生的主體探究意識。3.情感態(tài)度與價值觀 培養(yǎng)學生自主學習、積極探索的好習慣,激發(fā)學生學習數(shù)學、應用數(shù)學的興趣,體驗學習數(shù)學的快樂。【教學重點】 引導學生發(fā)現(xiàn)三角形內(nèi)角和是180°,并能應用這一知識解決一些簡單問題;通過量、拼、算等探究活動,使學生了解任意四邊形的內(nèi)角和都是3600 ?!窘虒W難點】 用不同方法驗證三角形的內(nèi)角和是180°;引導學生利用轉(zhuǎn)化的方法把四邊形或多邊形轉(zhuǎn)化成三角形,發(fā)現(xiàn)多邊形的邊數(shù)與內(nèi)角和之間的關系。【教學方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】多媒體、不同類型的三角形各一個、量角器。
2.過程與方法 通過實踐操作、猜想驗證、合作探究,經(jīng)歷發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”這一性質(zhì)的活動過程,發(fā)展空間觀念,培養(yǎng)邏輯思維能力,體驗“做數(shù)學”的成功。3.情感態(tài)度與價值觀 (1)發(fā)現(xiàn)生活中的數(shù)學美,會從美觀和實用的角度解決生活中的數(shù)學問題。 (2)學會從全面、周到的角度考慮問題。 【教學重點】 理解、掌握“三角形任意兩邊之和大于第三邊”的性質(zhì);理解兩點間的距離的含義?!窘虒W難點】 引導探索三角形的邊的關系,并發(fā)現(xiàn)“三角形任意兩邊的和大于第三邊”的性質(zhì)?!窘虒W方法】啟發(fā)式教學、自主探索、合作交流、討論法、講解法?!菊n前準備】多媒體、學具袋【課時安排】 1課時【教學過程】(一)復習導入 師:什么樣的圖形叫三角形?生交流:由3條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.
教學目標:1.能利用三角函數(shù)概念推導出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結(jié)合思想.教學重點:特殊角30°、60°、45°的三角函數(shù)值.教學難點:靈活應用特殊角的三角函數(shù)值進行計算.☆ 預習導航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關系?二、導讀:仔細閱讀課本內(nèi)容后完成下面填空:
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關鍵.三、板書設計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學時要多舉幾個例子,讓學生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學學習的魅力,為以后的學習奠定基礎
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.
教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示
解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關系式,將實際問題轉(zhuǎn)化為純數(shù)學問題;(2)應用有關函數(shù)的性質(zhì)作答.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結(jié)內(nèi)容總結(jié)不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結(jié)合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設難點:用二次函數(shù)與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應用.