1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.
方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語(yǔ),如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對(duì)于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對(duì)照和分析,即可判定.探究點(diǎn)二:確定多邊形的對(duì)角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對(duì)角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過(guò)n邊形的一個(gè)頂點(diǎn)可以畫出(n-3)條對(duì)角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對(duì)應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
探究點(diǎn)二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點(diǎn),求證:∠BPC>∠A.解析:由題意無(wú)法直接得出∠BPC>∠A,延長(zhǎng)BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長(zhǎng)BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時(shí),兩個(gè)角應(yīng)是同一個(gè)三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計(jì)三角形的外角外角:三角形的一邊與另一邊的延長(zhǎng)線所組成的 角,叫做三角形的外角推論1:三角形的一個(gè)外角等于和它不相鄰的兩 個(gè)內(nèi)角的和推論2:三角形的一個(gè)外角大于任何一個(gè)和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過(guò)的知識(shí)來(lái)推導(dǎo)出新的定理以及運(yùn)用新的定理解決相關(guān)問(wèn)題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強(qiáng)化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
證法二:(1)延長(zhǎng)BD交AC于E(或延長(zhǎng)CD交AB于E),如圖.則∠BDC是△CDE的一個(gè)外角.∴∠BDC>∠DEC.(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個(gè)外角(已作)∴∠DEC>∠A(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長(zhǎng)BD交AC于E,則∠BDC是△DCE的一個(gè)外角.∴∠BDC=∠C+∠DEC(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∵∠DEC是△ABE的一個(gè)外角∴∠DEC=∠A+∠B(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動(dòng)目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對(duì)于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個(gè)過(guò)渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
解:方法一:因?yàn)镈E∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因?yàn)镈F∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因?yàn)镈E∥BC,所以∠ADE=∠B.又因?yàn)镈F∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長(zhǎng),常通過(guò)找三角形相似得到成比例線段而求得,因此選擇哪兩個(gè)三角形就成了解題的關(guān)鍵,這就需要通過(guò)已知的線段和所求的線段分析得到.三、板書設(shè)計(jì)(1)相似三角形的定義:三角分別相等、三邊成比例的兩個(gè)三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個(gè)三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗(yàn)事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過(guò)程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動(dòng)手探究、歸納總結(jié)的能力.
同理,圖③中,三角形的三邊長(zhǎng)分別為2,5,3;同理,圖④中,三角形的三邊長(zhǎng)分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個(gè)圖形中的三角形均為格點(diǎn)三角形,可以根據(jù)勾股定理求出各邊的長(zhǎng),然后根據(jù)三角形三邊的長(zhǎng)度是否成比例來(lái)判斷兩個(gè)三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長(zhǎng)按大小順序排列,然后分別計(jì)算他們對(duì)應(yīng)邊的比,最后由比值是否相等來(lái)確定兩個(gè)三角形是否相似.三、板書設(shè)計(jì)相似三角形的判定定理3:三邊成比例的兩個(gè)三角形相似.從學(xué)生已學(xué)的知識(shí)入手,通過(guò)設(shè)置問(wèn)題,引導(dǎo)學(xué)生進(jìn)行計(jì)算、推理和歸納,提高分析問(wèn)題和解決問(wèn)題的能力.感受兩個(gè)三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會(huì)事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過(guò)程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì).
[想一想]同學(xué)們經(jīng)歷了上述三種方法,你還能想出哪些測(cè)量旗桿高度的方法?你認(rèn)為最優(yōu)化的方法是哪種?思路點(diǎn)拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽(yáng)光照射下影子都在平地上,并能測(cè)出影子的長(zhǎng)度,那么,可以在平地垂直樹(shù)一根小棒,等到小棒的影子恰好等于棒高時(shí),再量旗桿的影子,此時(shí)旗桿的影子長(zhǎng)度就是這個(gè)旗桿的高度.2、可以采用立一個(gè)已知長(zhǎng)度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長(zhǎng)度根據(jù)線段成比例來(lái)進(jìn)行計(jì)算.3、拿一根知道長(zhǎng)度的直棒,手臂伸直,不斷調(diào)整自己的位置,使直棒剛好完全擋住旗桿,量出此時(shí)人到旗桿的距離、人手臂的長(zhǎng)度和棒長(zhǎng),就可以利用三角形相似來(lái)進(jìn)行計(jì)算.等等.第四環(huán)節(jié) 課堂小結(jié)1、本節(jié)課你學(xué)到了哪些知識(shí)?2、在運(yùn)用科學(xué)知識(shí)進(jìn)行實(shí)踐過(guò)程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對(duì)自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對(duì)畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡(jiǎn)便.三、板書設(shè)計(jì)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點(diǎn).∵點(diǎn)E是AB的中點(diǎn),∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯(cuò)提醒:在運(yùn)用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時(shí),同樣要注意是對(duì)應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯(cuò)誤.三、板書設(shè)計(jì)相似三角形的周長(zhǎng)和面積之比:相似三角形的周長(zhǎng)比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過(guò)程,培養(yǎng)學(xué)生的探索能力.通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體驗(yàn)化歸思想.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,訓(xùn)練學(xué)生的運(yùn)用能力,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).
當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問(wèn)題,總結(jié)常見(jiàn)的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1、 如圖4-25,將一個(gè)圓分成三個(gè)大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個(gè)半徑是2cm的圓,并在其中畫一個(gè)圓心為60º的扇形,你會(huì)計(jì)算這個(gè)扇形的面積嗎?與同伴交流。教師對(duì)答案進(jìn)行匯總,講解本題解題思路:1、 因?yàn)橐粋€(gè)圓被分成了大小相同的扇形,所以每個(gè)扇形的圓心角相同,又因?yàn)閳A周角是360º,所以每個(gè)扇形的圓心角是360º÷3=120º,每個(gè)扇形的面積為整個(gè)圓的面積的三分之一。2、 先求出這個(gè)圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計(jì)意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識(shí)和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來(lái),體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。
【教學(xué)目標(biāo)】1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念;能在與他人交流的過(guò)程中,合理清晰地表達(dá)自己的思維過(guò)程.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的圖形.3.能識(shí)別簡(jiǎn)單物體的三視圖,會(huì)畫立方體及其簡(jiǎn)單組合體的三視圖.【基礎(chǔ)知識(shí)精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個(gè)點(diǎn)表示圓錐的頂點(diǎn),因?yàn)閺纳贤驴磮A錐時(shí)先看到圓錐的頂點(diǎn),再看到底面的圓.3.如何畫三視圖 當(dāng)用若干個(gè)小正方體搭成新的幾何體,如何畫這個(gè)新的幾何體的三視圖?
三:鞏固新知1、判斷對(duì)錯(cuò):(1)如果一個(gè)菱形的兩條對(duì)角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對(duì)角線互相垂直,那么它一定是正方形.( )(3)兩條對(duì)角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.
探究點(diǎn)三:列一元一次方程解應(yīng)用題某單位計(jì)劃“五一”期間組織職工到東湖旅游,如果單獨(dú)租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個(gè)剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時(shí)租用這兩種客車若干輛,問(wèn)有無(wú)可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問(wèn)可只寫結(jié)果,不寫分析過(guò)程)解析:(1)先設(shè)該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時(shí),利用假設(shè)一種車的數(shù)量,進(jìn)而得出另一種車的數(shù)量求出即可.解:(1)設(shè)該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因?yàn)樽庥?輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.
先讓學(xué)生自己總結(jié),然后互相交流,得出結(jié)論。解一元一次方程,一般要通過(guò)去分母,去括號(hào),移項(xiàng),合并同類項(xiàng),未知數(shù)的系數(shù)化為1等步驟,把一個(gè)一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時(shí),要靈活運(yùn)用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質(zhì)22、 去括號(hào)----去括號(hào)法則3、 移項(xiàng)----等式性質(zhì)14、 合并同類項(xiàng)----合并同類項(xiàng)法則5、 系數(shù)化為1.----等式性質(zhì)2【課堂練習(xí)】練習(xí):解下列一元一次方程解方程: (2) ;思路點(diǎn)拔:(1)去分母所選的乘數(shù)應(yīng)是所有分母的最小公倍數(shù),不應(yīng)遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時(shí),不要漏掉等號(hào)兩邊不含分母的項(xiàng)。(3)去掉分母后,分?jǐn)?shù)線也同時(shí)去掉,分子上的多項(xiàng)式用括號(hào)括起來(lái)?;仡櫧庖陨戏匠痰娜^(guò)程,表示了一元一次方程解法的一般步驟,通過(guò)去分母—去括號(hào)—移項(xiàng)—合并同類項(xiàng)—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉(zhuǎn)化。
證明:如圖,過(guò)點(diǎn)C作CF∥PD交AB于點(diǎn)F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時(shí),如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實(shí)以及推論得到相關(guān)比例式.如果圖中沒(méi)有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實(shí)及其推論得到相關(guān)比例式.三、板書設(shè)計(jì)平行線分線段成比例基本事實(shí):兩條直線被一組平行線所截, 所得的對(duì)應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對(duì)應(yīng)線段成比例通過(guò)教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個(gè)復(fù)雜的圖形分成幾個(gè)基本圖形,通過(guò)應(yīng)用鍛煉識(shí)圖能力和推理論證能力.在探索過(guò)程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體驗(yàn)探索結(jié)論的方法和過(guò)程,發(fā)展學(xué)生的合情推理能力和有條理的說(shuō)理表達(dá)能力.
由于題目較簡(jiǎn)單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問(wèn)題的優(yōu)越性.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1.會(huì)借線段圖分析行程問(wèn)題.2.各種行程問(wèn)題中的規(guī)律及等量關(guān)系.同向追及問(wèn)題:①同時(shí)不同地——甲路程+路程差=乙路程; 甲時(shí)間=乙時(shí)間.②同地不同時(shí)——甲時(shí)間+時(shí)間差=乙時(shí)間; 甲路程=乙路程.相向的相遇問(wèn)題:甲路程+乙路程=總路程; 甲時(shí)間=乙時(shí)間.目的:強(qiáng)調(diào)本課的重點(diǎn)內(nèi)容是要學(xué)會(huì)借線段圖來(lái)分析行程問(wèn)題,并能掌握各種行程問(wèn)題中的規(guī)律及等量關(guān)系.引導(dǎo)學(xué)生自己對(duì)所學(xué)知識(shí)和思想方法進(jìn)行歸納和總結(jié),從而形成自己對(duì)數(shù)學(xué)知識(shí)的理解和解決問(wèn)題的方法策略.