提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

主播指南主播輸送模式

  • 北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 人教版高中政治選修3亞太經濟合作組織:區(qū)域經濟合作的新形式教案

    人教版高中政治選修3亞太經濟合作組織:區(qū)域經濟合作的新形式教案

    (一)、亞太經濟合作組織的宗旨和作用1、亞太經合組織簡介:(1)、地位——當今世界最大的區(qū)域性經濟合作組織(2)、性質——是促進亞太國家和地區(qū)經濟合作、推動共同發(fā)展的主要機構。亞太經濟合作組織(APEC,簡稱亞太經合組織),是當今世界最大的區(qū)域性經濟合作組織,是促進亞太國家和地區(qū)經濟合作、推動共同發(fā)展的主要機構。相關鏈接:1989年11月,在澳大利亞的倡議下,澳大利亞、美國、加拿大、日本、韓國、新西蘭和東盟六國的外交與經濟部長在澳大利亞首都堪培拉召開部長級會議,正式宣告亞太經合組織成立。此后,該組織不斷擴大,到2004年底共有21個成員,既有美國、日本等發(fā)達國家,也有中國、馬來西亞、墨西哥等發(fā)展中國家。亞太經合組織的宗旨是:為本地區(qū)人民的共同利益而保持經濟的增長與發(fā)展,促進成員間經濟的相互依存,加強開放的多邊貿易體制,減少區(qū)域貿易和投資壁壘。

  • 人教A版高中數(shù)學必修一二次函數(shù)與一元二次方程、不等式教學設計(2)

    人教A版高中數(shù)學必修一二次函數(shù)與一元二次方程、不等式教學設計(2)

    三個“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學的重要內容,具有豐富的內涵和密切的聯(lián)系,同時也是研究包含二次曲線在內的許多內容的工具 高考試題中近一半的試題與這三個“二次”問題有關 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標1. 通過探索,使學生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學生能夠運用二次函數(shù)及其圖像,性質解決實際問題. 3. 滲透數(shù)形結合思想,進一步培養(yǎng)學生綜合解題能力。數(shù)學學科素養(yǎng)1.數(shù)學抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學運算:解一元二次不等式;4.數(shù)據分析:一元二次不等式解決實際問題;5.數(shù)學建模:運用數(shù)形結合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(1)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(1)

    本節(jié)課選自《普通高中課程標準實驗教科書數(shù)學必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內容是由兩角差的余弦公式的推導,運用誘導公式、同角三角函數(shù)的基本關系和代數(shù)變形,得到其它的和差角公式。讓學生感受數(shù)形結合及轉化的思想方法。發(fā)展學生數(shù)學直觀、數(shù)學抽象、邏輯推理、數(shù)學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.了解兩角差的余弦公式的推導過程.2.掌握由兩角差的余弦公式推導出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運用,了解公式的正用、逆用以及角的變換的常用方法.4.通過正切函數(shù)圖像與性質的探究,培養(yǎng)學生數(shù)形結合和類比的思想方法。 a.數(shù)學抽象:公式的推導;b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學運算:運用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導;e.數(shù)學建模:公式的靈活運用;

  • 人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(2)

    人教A版高中數(shù)學必修一兩角和與差的正弦、余弦和正切公式教學設計(2)

    本節(jié)內容是三角恒等變形的基礎,是正弦線、余弦線和誘導公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標1、能夠推導出兩角和與差的正弦、余弦、正切公式并能應用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關的化簡、求值、證明問題.數(shù)學學科素養(yǎng)1.數(shù)學抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學建模:學生體會到一般與特殊,換元等數(shù)學思想在三角恒等變換中的作用。.

  • 北師大版初中七年級數(shù)學下冊用關系式表示的變量間關系說課稿2篇

    北師大版初中七年級數(shù)學下冊用關系式表示的變量間關系說課稿2篇

    一.說教材我今天說課的內容是義務教育課程標準北師大版七年級下冊第四單元第二節(jié)的《用關系式表示的變量間關系》。在上節(jié)課的學習中學生已通過分析表格中的數(shù)據,感受到變量之間的相依關系,并用自己的語言加以描述,初步具有了有條理的思考和表達的能力,為本節(jié)的深入學習奠定了基礎。二.說教學目標本節(jié)課根據新的教學理念和學生需要掌握的知識,確立本節(jié)課的三種教學目標:知識與能力目標:根據具體情況,能用適當?shù)暮瘮?shù)表示方法刻畫簡單實際問題中變量之間的關系,能確定簡單實際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標:經歷探索某些圖形中變量之間的關系的過程,進一步體會一個變量對另一個變量的影響,發(fā)展符號感。情感態(tài)度與價值觀目標:通過研究,學習培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關系的表達,培養(yǎng)數(shù)學建模能力,增強應用意識。

  • 北師大版初中數(shù)學八年級下冊一元一次不等式與一次函數(shù)說課稿2篇

    北師大版初中數(shù)學八年級下冊一元一次不等式與一次函數(shù)說課稿2篇

    由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應的觀點考慮問題,解一元一次不等式也可以歸結為兩種認識:⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合。教學過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關系。1、“動”―――學生動口說,動腦想,動手做,親身經歷知識發(fā)生發(fā)展的過程。2、“探”―――引導學生動手畫圖,合作討論。通過探究學習激發(fā)強烈的探索欲望。3、“樂”―――本節(jié)課的設計力求做到與學生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學生興趣高一點,自信心強一點,使學生樂于學習,樂于思考。4、“滲”―――在整個教學過程中,滲透用聯(lián)系的觀點看待數(shù)學問題的辨證思想。

  • 北師大初中數(shù)學八年級上冊用二元一次方程組確定一次函數(shù)表達式1教案

    北師大初中數(shù)學八年級上冊用二元一次方程組確定一次函數(shù)表達式1教案

    故直線l2對應的函數(shù)關系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標系內畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結:此題在待定系數(shù)法的應用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結合起來,既考查了基本知識,又不局限于基本知識.三、板書設計利用二元一次方程組確定一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式:y=kx+b(k≠0);2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進而得到一次函數(shù)的表達式.通過教學,進一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉化.通過對本節(jié)課的探究,培養(yǎng)學生的觀察能力、識圖能力以及語言表達能力.

  • 北師大初中八年級數(shù)學下冊一元一次不等式與一次函數(shù)的綜合應用教案

    北師大初中八年級數(shù)學下冊一元一次不等式與一次函數(shù)的綜合應用教案

    解析:(1)根據題設條件,求出等量關系,列一元一次方程即可求解;(2)根據題設中的不等關系列出相應的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設計一元一次不等式與一次函數(shù)關系的實際應用分類討論思想、數(shù)形結合思想本課時結合生活中的實例組織學生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學生分析、解決問題的能力,從新課到練習都充分調動了學生的思考能力,為后面的學習打下基礎.

  • 北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程1教案

    北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程1教案

    探究點二:選用適當?shù)姆椒ń庖辉畏匠逃眠m當?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結:解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.

  • 北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    北師大初中數(shù)學九年級上冊用因式分解法求解一元二次方程2教案

    【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉化”思想,并了解這種轉化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 【高教版】中職數(shù)學基礎模塊上冊:5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【高教版】中職數(shù)學基礎模塊上冊:5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【教學目標】知識目標:⑴ 理解任意角的三角函數(shù)的定義及定義域;⑵ 理解三角函數(shù)在各象限的正負號;⑶掌握界限角的三角函數(shù)值.能力目標:⑴會利用定義求任意角的三角函數(shù)值;⑵會判斷任意角三角函數(shù)的正負號;⑶培養(yǎng)學生的觀察能力.【教學重點】⑴ 任意角的三角函數(shù)的概念;⑵ 三角函數(shù)在各象限的符號;⑶特殊角的三角函數(shù)值.【教學難點】任意角的三角函數(shù)值符號的確定.【教學設計】(1)在知識回顧中推廣得到新知識;(2)數(shù)形結合探求三角函數(shù)的定義域;(3)利用定義認識各象限角三角函數(shù)的正負號;(4)數(shù)形結合認識界限角的三角函數(shù)值;(5)問題引領,師生互動.在問題的思考和交流中,提升能力.

  • 高教版中職數(shù)學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    高教版中職數(shù)學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10

  • 高教版中職數(shù)學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    高教版中職數(shù)學基礎模塊下冊:7.1《平面向量的概念及線性運算》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10

  • 高教版中職數(shù)學基礎模塊下冊:8.3《兩條直線的位置關系》優(yōu)秀教案設計

    高教版中職數(shù)學基礎模塊下冊:8.3《兩條直線的位置關系》優(yōu)秀教案設計

    教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(一) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內兩條直線的位置關系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時,“同位角相等”是“這兩條直線平行”的充要條件. 【問題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考*動腦思考 探索新知 【新知識】 當兩條直線、的斜率都存在且都不為0時(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過來,如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當直線、的斜率都是0時(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當兩條直線、的斜率都不存在時(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時,兩條直線相交. 由上面的討論知,當直線、的斜率都存在時,設,,則 兩個方程的系數(shù)關系兩條直線的位置關系相交平行重合 當兩條直線的斜率都存在時,就可以利用兩條直線的斜率及直線在y軸上的截距,來判斷兩直線的位置關系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 理解 思考 理解 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果

  • 高教版中職數(shù)學基礎模塊下冊:9.2《直線與直線、直線與平面、平面與平面平行的判定》

    高教版中職數(shù)學基礎模塊下冊:9.2《直線與直線、直線與平面、平面與平面平行的判定》

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質 *創(chuàng)設情境 興趣導入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個平面內. 圖9?13 觀察教室中的物體,你能否抽象出這種位置關系的兩條直線? 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 2*動腦思考 探索新知 在同一個平面內的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個平面內的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請畫出實物圖) 受實驗的啟發(fā),我們可以利用平面做襯托,畫出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書本,演示圖9?15(2)的異面直線位置關系. 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 5

  • 高教版中職數(shù)學基礎模塊下冊:9.3《直線與直線、直線與平面、平面與平面所成的角》

    高教版中職數(shù)學基礎模塊下冊:9.3《直線與直線、直線與平面、平面與平面所成的角》

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設情境 興趣導入 在圖9?30所示的長方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點P,過點P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 5*動腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經過空間任意一點分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡便,經常取一條直線與過另一條直線的平面的交點作為點(如圖9?31(2)) (1) 圖9-31(2) 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 12*鞏固知識 典型例題 例1 如圖9?32所示的長方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因為 ∥,所以為異面直線與所成的角.即所求角為. (2)因為∥,所以為異面直線與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說明 強調 引領 講解 說明 觀察 思考 主動 求解 通過例題進一步領會 17

  • 高教版中職數(shù)學基礎模塊下冊:10.3《總體、樣本與抽樣方法》優(yōu)秀教案設計

    高教版中職數(shù)學基礎模塊下冊:10.3《總體、樣本與抽樣方法》優(yōu)秀教案設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(二) *創(chuàng)設情境 興趣導入 【問題】 用樣本估計總體時,樣本抽取得是否恰當,直接關系到總體特性估計的準確程度.那么,應該如何抽取樣本呢? 介紹 質疑 了解 思考 啟發(fā) 學生思考 0 5*動腦思考 探索新知 【新知識】 下面介紹幾種常用的抽樣方法. 1.簡單隨機抽樣 從一批蘋果中選取10個,每個蘋果被選中的可能性一般是不相等的,放在上面的蘋果更容易被選中.實際過程又不允許將整箱蘋果倒出來,攪拌均勻.因此,10個蘋果做樣本的代表意義就會打折扣. 我們采用抽簽的方法,將蘋果按照某種順序(比如箱、層、行、列順序)編號,寫在小紙片上.將小紙片揉成小團,放到一個不透明的袋子中,充分攪拌后,再從中逐個抽出10個小紙團.最后根據編號找到蘋果. 這種抽樣叫做簡單隨機抽樣. 簡單隨機抽樣必須保證總體的每個個體被抽到的機會是相同的.也就是說,簡單隨機抽樣是等概率抽樣. 抽簽法(俗稱抓鬮法)是最常用的簡單隨機抽樣方法.其主要步驟為 (1)編號做簽:將總體中的N個個體編上號,并把號碼寫到簽上; (2)抽簽得樣本:將做好的簽放到容器中,攪拌均勻后,從中逐個抽出n個簽,得到一個容量為n的樣本. 當總體中所含的個體較少時,通常采用簡單隨機抽樣.例如,從某班抽取10位同學去參加義務勞動,就可采用抽簽的方法來抽取樣本. 當總體中的個體較多時,“攪拌均勻”不容易做到,這樣抽出的樣本的代表性就會打折扣.此時可以采用“隨機數(shù)法”抽樣. 產生隨機數(shù)的方法很多,利用計算器(或計算機)可以方便地產生隨機數(shù). CASIO fx 82ESPLUS函數(shù)型計算器(如圖10-3),利用 · 鍵的第二功能產生隨機數(shù).操作方法是:首先設置精確度并將計算器顯示設置為小數(shù)狀態(tài),依次按鍵SHIFT 、 MODE、 2 ,然后連續(xù)按鍵 SHIFT 、 RAN# ,以后每按鍵一次 = 鍵,就能隨機得到0~1之間的一個純小數(shù). 采用“隨機數(shù)法”抽樣的步驟為: (1)編號:將總體中的N個個體編上號; (2)選號:指定隨機號的范圍,利用計算器產生n個有效的隨機號(范圍之外或重復的號無效),得到一個容量為n的樣本. 講解 說明 引領 分析 仔細 分析 關鍵 語句 觀察 理解 記憶 帶領 學生 分析 20

上一頁123...55565758596061
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。