解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時,常常使用計算器幫助我們處理比較復(fù)雜的計算。
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時,測得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結(jié)合思想.教學(xué)重點(diǎn):特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點(diǎn):靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時,一定要把整個負(fù)數(shù)和分?jǐn)?shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學(xué)生上臺板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運(yùn)算,可以運(yùn)用有理數(shù)乘方法則進(jìn)行符號的確定和冪的求值.乘方的含義:①表示一種運(yùn)算;②表示運(yùn)算的結(jié)果.
解:∵y=23x+a與y=-12x+b的圖象都過點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點(diǎn)的坐標(biāo),即兩個一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實(shí)際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實(shí)際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實(shí)際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
解:設(shè)正比例函數(shù)的表達(dá)式為y1=k1x,一次函數(shù)的表達(dá)式為y2=k2x+b.∵點(diǎn)A(4,3)是它們的交點(diǎn),∴代入上述表達(dá)式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達(dá)式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點(diǎn)B在y軸的負(fù)半軸上,∴B點(diǎn)的坐標(biāo)為(0,-52).又∵點(diǎn)B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達(dá)式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達(dá)式的方法:從圖象上選取兩個已知點(diǎn)的坐標(biāo),然后運(yùn)用待定系數(shù)法將兩點(diǎn)的橫、縱坐標(biāo)代入所設(shè)表達(dá)式中求出待定系數(shù),從而求出函數(shù)的表達(dá)式.【類型三】 根據(jù)實(shí)際問題確定一次函數(shù)的表達(dá)式某商店售貨時,在進(jìn)價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.
四、教學(xué)設(shè)計反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應(yīng)關(guān)系有點(diǎn)陌生.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對函數(shù)與圖象的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實(shí)踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運(yùn)用“兩點(diǎn)確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動中,鼓勵學(xué)生積極思考,提高學(xué)生解決實(shí)際問題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達(dá)式的尋求,甚至對部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應(yīng)的圖形具有什么特征呢?
解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點(diǎn)的坐標(biāo)為(-53,-3).三、板書設(shè)計反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時,兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時,兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過學(xué)生自己動手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.
如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點(diǎn)B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點(diǎn)B(x0,y0)是反比例函數(shù)y=kx圖象上的一點(diǎn),則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點(diǎn)B在第二象限,∴k=-1.方法總結(jié):利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設(shè)計反比例函數(shù)的性質(zhì)性質(zhì)當(dāng)k>0時,在每一象限內(nèi),y的值隨x的值的增大而減小當(dāng)k<0時,在每一象限內(nèi),y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關(guān)性質(zhì),進(jìn)行語言表述,訓(xùn)練學(xué)生的概括、總結(jié)能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學(xué)生積極參與到數(shù)學(xué)學(xué)習(xí)活動中,增強(qiáng)他們對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.
因?yàn)榉幢壤瘮?shù)的圖象經(jīng)過點(diǎn)A(1.5,400),所以有k=600.所以反比例函數(shù)的關(guān)系式為p=600S(S>0);(2)當(dāng)S=0.2時,p=6000.2=3000,即壓強(qiáng)是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學(xué)中壓強(qiáng)、壓力與受力面積之間的關(guān)系p= ,當(dāng)壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實(shí)際問題時,要善于發(fā)現(xiàn)實(shí)際問題中變量之間的關(guān)系,從而進(jìn)一步建立反比例函數(shù)模型.三、板書設(shè)計反比例函數(shù)的應(yīng)用實(shí)際問題與反比例函數(shù)反比例函數(shù)與其他學(xué)科知識的綜合經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題的過程,提高運(yùn)用代數(shù)方法解決問題的能力,體會數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識.通過反比例函數(shù)在其他學(xué)科中的運(yùn)用,體驗(yàn)學(xué)科整合思想.
補(bǔ)充題:為了預(yù)防“非典”,某學(xué)校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關(guān)于x的函數(shù)關(guān)系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為 .(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時學(xué)生方可進(jìn)教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學(xué)生才能回到教室;(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實(shí)際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實(shí)際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運(yùn)用公式法或通過配方法求出二次函數(shù)的最值?!? 達(dá)標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍(lán)天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值
人民幣的簡單計算是在對人民幣的認(rèn)識后,是人民幣的再進(jìn)一步的認(rèn)識。本節(jié)課的主要知識點(diǎn)主要有三個:一人民幣單位間的換算、二進(jìn)行簡單的計算,三是知道商品價格的表示形式。同時通過這節(jié)課的學(xué)習(xí),逐漸培養(yǎng)交往和社會實(shí)踐能力,體會人民幣在社會生活商品交換中的作用。為了達(dá)成以上的一些目標(biāo)我是這樣設(shè)計這節(jié)課。一、從學(xué)生經(jīng)驗(yàn)入手直接引入商品價格,在學(xué)生回憶商品價格的表示方法中,喚醒學(xué)生的思緒,使學(xué)生覺得在所學(xué)的知識與實(shí)際生活的聯(lián)系。讓學(xué)生體驗(yàn)到數(shù)學(xué)與日常生活的密切聯(lián)系。二、在操作中完成進(jìn)率的換算。進(jìn)率的換算在教學(xué)是一個重點(diǎn)也是難點(diǎn),為此我在教學(xué)上通過不同的的付錢方法,深刻體會,這樣的教學(xué)讓說不清的關(guān)系,在操作講解中得以內(nèi)化。學(xué)生學(xué)了也不易忘記。
朋友們都聽說了我們的神奇魔力,米老鼠也來請我們幫忙了,你們愿意幫他把墻修補(bǔ)好嗎?(幻燈11,同時請一名同學(xué)到臺前來親自動手粘一下)在我們的幫助下,米老鼠家缺了10塊磚的墻就被修補(bǔ)好了(幻燈12)七、拼圖大比賽。1、師:現(xiàn)在請同學(xué)們運(yùn)用自己手中的所有材料,發(fā)揮你的想象,可以自己拼,也可以和組員合作拼出自己喜歡的圖形,比一比,看那些同學(xué)拼得又好又快,又有創(chuàng)意。 2、展示學(xué)生作品。學(xué)生自己評價或者互相評價。八、欣賞品評,知識延伸 師:同學(xué)們剛才拼的圖形非常漂亮,老師很喜歡。生活中有許多地方都需要優(yōu)美的圖形的裝飾,同學(xué)們也可以是一位小小設(shè)計師,設(shè)計出美麗的圖案,裝點(diǎn)生活,美化環(huán)境。(欣賞生活中的優(yōu)秀裝飾作品) 師:通過剛才的欣賞,你有什么想法?
小結(jié):分別沿正方形紙的兩組對邊做出的圓筒一樣長、也一樣粗,因?yàn)檎叫蔚乃臈l邊都相等。解決問題。課件出示:你能用幾種方法,數(shù)出下圖中小正方體的個數(shù)?方法一:可以從上往下數(shù)(或從下往上數(shù))第一層有2個,第二層有4個,第三層有6個,三層共有:2 + 4 + 6 = 12(個);方法二:也可以從左往右數(shù)(或從右往左數(shù))。第一排有4個,第二排有6個,第三排有2個,三排共有:4 + 6 + 2 = 12(個);方法三:還可以將最上面一層的2個移到第二層的右側(cè)。這樣,這堆木塊就變成了兩層,每層都有6個,共有6 + 6 = 12(個)。(四)全課總結(jié)這節(jié)課我們用長方體和正方體拼組了很多不同形狀的圖形。其實(shí)在我們的生活中,有很多物體的形狀都是由長方體和正方體拼組而成的,希望同學(xué)們課下留心觀察。(五)練習(xí)數(shù)一數(shù),下面的圖形由幾個正方體組成?
出示例6掛圖。教師試問:誰知道0.50元是幾角?2.00元是幾角?你是怎么知道?以元為單位小數(shù)點(diǎn)左邊是幾就是幾元,右邊第一位是幾就是幾角,右邊第二位是幾就是幾分。1.20元是1元2角。35.90元是35元9角。(這部分知識學(xué)生知道它表示幾元幾角就可以了,至于1.20元是個什么數(shù),怎么讀、寫不需要學(xué)生掌握)3、教學(xué)例7。(1) 課件演示例7第一小題。教師:0.5元是幾角?(5角)0.80元是幾角?(8角)學(xué)生回答。5角+8角是幾角?(5角+8角=13角教師板書)教師問:多少角是1元?13角里面拿出10角還剩多少角?(3角)所以13角等于1元3角。教師板書:5角+8角=13角=1元3角。(2)例7第二小題(課件演示,提出問題:我買這兩個氣球要多少錢)學(xué)生嘗試完成,然后提問:你是怎么想的?教師強(qiáng)調(diào):元、角計算,只有在相同單位的情況下,才能相加。
教學(xué)目標(biāo): 1.理解、掌握梯形面積的計算公式,并能運(yùn)用公式正確計算梯形的面積。2.發(fā)展學(xué)生空間觀念。培養(yǎng)抽象、概括和解決實(shí)際問題的能力。3.掌握“轉(zhuǎn)化”的思想和方法,進(jìn)一步明白事物之間是相互聯(lián)系,可以轉(zhuǎn)化的。教學(xué)重點(diǎn):理解、掌握梯形面積的計算公式。教學(xué)難點(diǎn):理解梯形面積公式的推導(dǎo)過程。教學(xué)過程:1.導(dǎo)入新課(1)投影出示一個三角形,提問:這是一個三角形,怎樣求它的面積?三角形面積計算公式是怎樣推導(dǎo)得到的?學(xué)生回答后,指名學(xué)生操作演示轉(zhuǎn)化的方法。(2)展示臺出示梯形,讓學(xué)生說出它的上底、下底和各是多少厘米。(3)教師導(dǎo)語:我們已學(xué)會了用轉(zhuǎn)化的方法推導(dǎo)三角形面積的計算公式,那怎樣計算梯形的面積呢?這節(jié)課我們就來解決這個問題。(板書課題,梯形面積的計算)
師:剛才同學(xué)們用兩個完全相同的三角形拼出四邊形,用兩個不完全相同的三角形拼出一個任意的四邊形。用三個相同的三角形拼出了梯形,如果把各種類型的三角形放在一起來個快樂大比拼,你們行嗎?那好,請拿出準(zhǔn)備好的三角形拼一拼,看誰拼出的圖案最漂亮。生:展示(每個小組選一個代表到前面展示本組的作品,并說說作品中包含哪些圖形)4.知識生活秀:(4分鐘)(1)同學(xué)們都到喜歡有山有水的地方去玩,大自然是非常美麗的,所以我們要保護(hù)她,愛護(hù)花草樹木,做熱愛大自然的好孩子?,F(xiàn)在用你們手中的圖形貼在黑板上,集體繪制一幅大自然的圖畫。繪制后:看著這幅圖加上自己豐富的想象說一句話。(2)我們今天用的知識在數(shù)學(xué)中有一個名字叫做“密鋪”,在我們的生活中,動物的世界中很多地方用到了密鋪,想在就讓我們一起去看看吧,圖片欣賞??磥砩钪刑幪幱袛?shù)學(xué)啊,在感受數(shù)學(xué)魅力的同時,我想知道本節(jié)課的內(nèi)容你們都學(xué)會了嗎?
一、認(rèn)識射線和直線1.認(rèn)識線段的特征。(下面的板書填在一個表里)出示線段(長4分米)。提問:誰來告訴大家,黑板上的圖形叫什么?(板書:線段)提問:線段要怎樣畫?(按學(xué)生的回答畫線段)。畫線段時,開始和結(jié)束都要注意什么?指出:線段是直的,有兩個端點(diǎn)。是有限長的,我們可以用直尺量出線段的長度。誰能來量一量黑板上的線段,告訴大家,它的長是多少?,F(xiàn)在看老師再來畫一條5分米長的線段。2.認(rèn)識射線。如果把線段的一端無限延長,(老師延長第二條線段)就得到一條射線。(板書:射線)把射線與線段比一比,它有什么特點(diǎn)?指出:射線也是直的,它只有一個端點(diǎn)。另一方?jīng)]有端點(diǎn),可以無限地延長下去,是無限長的。直尺或三角尺可以畫出射線:先點(diǎn)一點(diǎn),再沿著尺的一邊畫射線。請大家在練習(xí)本上畫一條射線。