在答案的匯總過程中,要肯定學(xué)生的探索,愛護(hù)學(xué)生的學(xué)習(xí)興趣和探索欲.讓學(xué)生作課堂的主人,陳述自己的結(jié)果.對(duì)學(xué)生的不完整或不準(zhǔn)確回答,教師適當(dāng)延遲評(píng)價(jià);要鼓勵(lì)學(xué)生創(chuàng)造性思維,教師要及時(shí)抓住學(xué)生智慧的火花的閃現(xiàn),這一瞬間的心理激勵(lì),是培養(yǎng)學(xué)生創(chuàng)造力、充分挖掘潛能的有效途徑.預(yù)先設(shè)想學(xué)生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號(hào)情況(可遇見情況:正數(shù)+正數(shù);負(fù)數(shù)+負(fù)數(shù);正數(shù)+負(fù)數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號(hào)兩數(shù)相加;異號(hào)兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對(duì)值相加;加數(shù)的絕對(duì)值相減)⑤ 從和的符號(hào)確定方面(同號(hào)兩數(shù)相加符號(hào)的確定;異號(hào)兩數(shù)相加符號(hào)的確定)教學(xué)中要避免課堂熱熱鬧鬧,卻陷入數(shù)學(xué)教學(xué)的淺薄與貧乏.
5、總結(jié)學(xué)生解題過程中存在的問題,并指導(dǎo)并糾正、分析根本原因。6、通過演示法給學(xué)生演示完整、詳細(xì)和規(guī)范的解題過程。7、總結(jié)有理數(shù)的運(yùn)算順序和方法。先讓學(xué)生自己總結(jié)運(yùn)算順序,培養(yǎng)學(xué)生自己思考的能力,然后教師進(jìn)行糾正。等這個(gè)過程結(jié)束之后,再給出完整的運(yùn)算順序和方法。8、出示練習(xí)題,鞏固所學(xué)知識(shí),教師及時(shí)指正。9、最后布置課后作業(yè)題。四、教學(xué)評(píng)價(jià)本節(jié)課我注重體現(xiàn)“以教師為主導(dǎo)、學(xué)生為主體、以學(xué)生發(fā)展為本的教學(xué)思想”。1、通過具體的題目引入,讓學(xué)生先以自己的知識(shí)體系解決問題,在這過程中發(fā)現(xiàn)問題、歸納總結(jié)原因,并予以解決。一方面復(fù)習(xí)前面所學(xué)的基本運(yùn)算,另一方面完善學(xué)生的知識(shí)體系。2、培養(yǎng)學(xué)生自主學(xué)習(xí)與探究的能力、分析與解決問題的能力。
“數(shù)的運(yùn)算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容,減法是其中的一種基本運(yùn)算.本課的學(xué)習(xí)遠(yuǎn)接小學(xué)階段關(guān)于整數(shù)、分?jǐn)?shù)(包括小數(shù))的減法運(yùn)算,近承第四節(jié)有理數(shù)的加法運(yùn)算.通過對(duì)有理數(shù)的減法運(yùn)算的學(xué)習(xí),學(xué)生將對(duì)減法運(yùn)算有進(jìn)一步的認(rèn)識(shí)和理解,為后繼諸如實(shí)數(shù)、復(fù)數(shù)的減法運(yùn)算的學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ).鑒于以上對(duì)教學(xué)內(nèi)容在教材體系中的位置及地位的認(rèn)識(shí)和理解,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識(shí)目標(biāo):經(jīng)歷探索有理數(shù)的減法法則的過程,理解有理數(shù)的減法法則,并能熟練運(yùn)用法則進(jìn)行有理數(shù)的減法運(yùn)算.2、能力目標(biāo):經(jīng)歷由特例歸納出一般規(guī)律的過程,培養(yǎng)學(xué)生的抽象概括能力及表達(dá)能力;通過減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會(huì)轉(zhuǎn)化、化歸的數(shù)學(xué)思想.3、情感目標(biāo):
將一個(gè)圓分成三個(gè)大小相同的扇形,你能計(jì)算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴交流設(shè)計(jì)意圖:通過引導(dǎo)學(xué)生根據(jù)圓心角與圓心角的比例確定扇形面積與整圓的面積關(guān)系為后面學(xué)習(xí)扇形面積公式做鋪墊,體現(xiàn)知識(shí)的延續(xù)性。(六)、鞏固練習(xí).如圖,把一圓分成三個(gè)扇形,你能求出這三個(gè)扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結(jié)學(xué)完這節(jié)課你有哪些收獲?設(shè)計(jì)意圖:通過小節(jié)讓學(xué)生對(duì)所學(xué)知識(shí)進(jìn)行梳理,使所學(xué)知識(shí)能合理地納入自身的知識(shí)結(jié)構(gòu)。(八) 布置作業(yè):中等學(xué)生:P125. 1優(yōu)等生: P125. 2,3我針對(duì)學(xué)生素質(zhì)的差異設(shè)計(jì)了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。
創(chuàng)設(shè)情景 興趣導(dǎo)入問題 觀察鐘表,如果當(dāng)前的時(shí)間是2點(diǎn),那么時(shí)針走過12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?再經(jīng)過12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?.解決每間隔12小時(shí),當(dāng)前時(shí)間2點(diǎn)重復(fù)出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動(dòng)腦思考 探索新知概念 對(duì)于函數(shù),如果存在一個(gè)不為零的常數(shù),當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個(gè)函數(shù)的一個(gè)周期. 由于正弦函數(shù)的定義域是實(shí)數(shù)集R,對(duì),恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡(jiǎn)稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
還有其他解法嗎?從中讓學(xué)生體會(huì)解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗(yàn)的方法,鼓勵(lì)他們養(yǎng)成檢驗(yàn)的習(xí)慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項(xiàng)的規(guī)律是什么?多媒體展示上面變形的過程,讓學(xué)生觀察在變形過程中,變化的項(xiàng)的變化規(guī)律,引出新知識(shí).師提出問題:1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).
1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個(gè)變化過程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對(duì)課前解方程的變形能說出哪一過程是移項(xiàng).對(duì)比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡(jiǎn)便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、化簡(jiǎn)、檢驗(yàn).)
目的:進(jìn)一步理解追擊問題的實(shí)質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問題得到解決。環(huán)節(jié)三、運(yùn)用鞏固活動(dòng)內(nèi)容:育紅學(xué)校七年級(jí)學(xué)生步行郊外旅行,1班的學(xué)生組成前隊(duì),步行速度為4千米/小時(shí),3班的學(xué)生組成后隊(duì),步行速度為6千米/小時(shí),1班出發(fā)一個(gè)小時(shí)后,3班才出發(fā)。請(qǐng)根據(jù)以上的事實(shí)提出問題并嘗試回答。問題1:3班追上1班用了多長(zhǎng)時(shí)間 ?問題2:3班追上1班時(shí),他們離學(xué)校多遠(yuǎn)?問題3:………………目的:給學(xué)生提供進(jìn)一步鞏固建立方程模型的基本過程和方法的熟悉機(jī)會(huì),讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會(huì)借線段圖分析行程問題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問題,同時(shí)還需注意檢驗(yàn)方程解的合理性.實(shí)際活動(dòng)效果:由于題目較簡(jiǎn)單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問題的優(yōu)越性.
五、教學(xué)反思:時(shí)鐘的秒針、分針、時(shí)針掃的圖形, 汽車擋風(fēng)玻璃的刮水器;刷工人刷過的面積近似看為扇形。圓中的計(jì)算問題---弧長(zhǎng)和扇形的面積,雖然新課標(biāo)、新教材要求學(xué)習(xí),但本節(jié)教師結(jié)合學(xué)生的實(shí)際要求,將其作為內(nèi)容進(jìn)行拓展與延伸,具有一定的實(shí)際意義。用生活中動(dòng)態(tài)幾何解釋扇形,體驗(yàn)解決問題策略的多樣性,發(fā)展實(shí)踐能力與創(chuàng)新精神。本節(jié)課,教師通過“扇子”的問題情景引入新課,它蘊(yùn)含了大量的情感信息,有效激發(fā)學(xué)生的求知欲望,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,注重學(xué)生的參與,讓出時(shí)間與空間由學(xué)生動(dòng)手實(shí)踐,鼓勵(lì)學(xué)生自主探索、合作交流、展示成果,提高了學(xué)生發(fā)現(xiàn)問題、提出問題、解決問題的能力。用“扇子變化”,幫助學(xué)生探索自然界中事物的動(dòng)靜結(jié)合問題,利用“扇子的文化”的新奇感激起學(xué)生的學(xué)習(xí)熱情,陶冶了學(xué)生的學(xué)習(xí)情操,從而使學(xué)生更深切地理解問題,使原本單調(diào)枯燥的數(shù)學(xué)變得生動(dòng)、形象,激發(fā)學(xué)生的情感,使課堂充滿生機(jī)。
五、說課件設(shè)計(jì)及板書隨著教育現(xiàn)代化的發(fā)展,多媒體課件在課堂中輔助教師授課,幫助學(xué)生練習(xí),已成為非常重要的教學(xué)輔助工具之一。在本節(jié)課的授課過程中,本人也使用了多媒體教學(xué)課件。課件在設(shè)計(jì)上遵循實(shí)用性原則、輔助性原則、創(chuàng)新性原則,緊緊圍繞教學(xué)目標(biāo),服務(wù)于課堂教學(xué),設(shè)計(jì)科學(xué)合理,制作精美細(xì)致;課件的有效使用很好地優(yōu)化了課堂,極大地?cái)U(kuò)充了容量,有力地突出了重點(diǎn),輕松地化解了難點(diǎn);使學(xué)生學(xué)習(xí)興趣濃郁,使教學(xué)效率大大提高;特別是在演示多邊形對(duì)應(yīng)角相等的設(shè)計(jì),使這一教學(xué)環(huán)節(jié)變得更直觀、更高效、更方便,讓學(xué)生輕松地進(jìn)行探究,很好地保護(hù)了學(xué)生的學(xué)習(xí)熱情,方便了教師的策略實(shí)現(xiàn)。在授課過程中,我又不是完全依賴于多媒體課件,而成了課件反映員;我充分發(fā)揮教師的主導(dǎo)作用,合理地利用黑板板書有關(guān)內(nèi)容,靈活動(dòng)配合多媒體課件為學(xué)生呈現(xiàn)有關(guān)知識(shí)點(diǎn),以彌補(bǔ)課件的不足。
三、達(dá)標(biāo)測(cè)試這一環(huán)節(jié),我共設(shè)計(jì)了5道題,題型有選擇、填空、解答。這些題都來自于課后習(xí)題,是課后習(xí)題的重組和整合,能夠很好地考查學(xué)生對(duì)本節(jié)課的掌握情況。這一環(huán)節(jié)設(shè)計(jì)以多變的題型呈現(xiàn),總體還是以基礎(chǔ)題為主,以課后習(xí)題為主要內(nèi)容設(shè)計(jì),可把課后習(xí)題改編成填空、選擇、計(jì)算、解答、證明等。這些題的設(shè)計(jì)要有典性、代表性,要緊跟時(shí)代步伐。80%-90%的學(xué)生能做全對(duì),題量不能超過6道題。學(xué)生答題時(shí)間不能超過8分鐘。四、拓展延伸這一環(huán)節(jié)以綜合運(yùn)用推論的一道計(jì)算題呈現(xiàn)的。旨在讓學(xué)生在課后鞏固對(duì)推論的理解,另一方面也為后面學(xué)習(xí)相似三角形做鋪墊。以上幾個(gè)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過動(dòng)腦思考、層層遞進(jìn),對(duì)知識(shí)的理解逐步深入,使課堂效益達(dá)到最佳狀態(tài)。
課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會(huì)用符號(hào)表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會(huì)應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會(huì)用斜二測(cè)畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆?hào)表示點(diǎn)、線、面之間的關(guān)系;會(huì)用斜二測(cè)畫法畫立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動(dòng)手畫,動(dòng)腦想,但立體幾何的語(yǔ)言及想象能力差
接著引導(dǎo)學(xué)生進(jìn)一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學(xué)生的思考經(jīng)歷由一般到特殊的過程。2.截面是其他形狀學(xué)生先猜想正方體的截面還有可能是什么形狀,再利用實(shí)驗(yàn)操作型課件對(duì)正方體進(jìn)行無限次的切截,讓學(xué)生在無限次切截的過程中體會(huì)截面產(chǎn)生和變化的整個(gè)過程,發(fā)現(xiàn)截面產(chǎn)生和變化的規(guī)律。學(xué)生從切截活動(dòng)中發(fā)現(xiàn)猜想時(shí)沒有想到的截面圖形,體會(huì)到探索的樂趣。教師再引導(dǎo)學(xué)生歸納正方體截面邊數(shù)的規(guī)律。學(xué)生的認(rèn)知得到升華。接著引導(dǎo)學(xué)生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學(xué)生先猜想圓柱體的截面可能是什么形狀,教師利用實(shí)驗(yàn)操作型課件對(duì)圓柱體進(jìn)行無限次的切截,學(xué)生觀察截面形狀。
一是先用計(jì)算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,為下面的數(shù)學(xué)探險(xiǎn)作鋪墊。二是數(shù)學(xué)探險(xiǎn)。在這個(gè)步驟中,我先出示8個(gè)1乘8個(gè)1,學(xué)生用計(jì)算器計(jì)算的答案肯定不一樣,因?yàn)閷W(xué)生帶來的計(jì)算器所能顯示的數(shù)位不一樣,而且這些計(jì)算器所能顯示的數(shù)位都不夠用,也就是這道題目計(jì)算器不能解決。這時(shí)我提問:“你覺得問題出在哪兒?是我們錯(cuò)了,還是計(jì)算器錯(cuò)了?你能想辦法解決嗎?請(qǐng)四人小組討論一下解決方案?!边@樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問題的需要和欲望。在學(xué)生找不到更好的解決方法時(shí),引導(dǎo)學(xué)生向書本請(qǐng)教,完成課本第101頁(yè)想想做做的第四題。讓學(xué)生利用計(jì)算器算出前5題的得數(shù),引導(dǎo)學(xué)生通過觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個(gè)算式,發(fā)展學(xué)生的合情推理能力,同時(shí)也讓學(xué)生領(lǐng)略了數(shù)學(xué)的神奇。
②.通過“由文字語(yǔ)言到符號(hào)語(yǔ)言”再“由符號(hào)語(yǔ)言到文字語(yǔ)言”讓學(xué)生從正反兩方面雙向建構(gòu).突破難點(diǎn)策略:①.分三步分散難點(diǎn):引入時(shí)大量的實(shí)際情景,讓學(xué)生體會(huì)到代數(shù)式存在的普遍性;讓學(xué)生給自己構(gòu)造的一些簡(jiǎn)單代數(shù)式賦予實(shí)際意義,進(jìn)一步體會(huì)代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進(jìn)一步提高解決實(shí)際問題的能力.②.適時(shí)安排小組合作與交流,使學(xué)生在傾聽、質(zhì)疑、說服、推廣的過程中得到“同化”和“順應(yīng)”,直至豁然開朗,突破思維的瓶頸.2.生成預(yù)設(shè)為生成服務(wù),本案編代數(shù)式、主題研究等環(huán)節(jié)的設(shè)計(jì)為學(xué)生精彩的生成提供了很好的平臺(tái),在實(shí)際教學(xué)過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學(xué)生思維的亮點(diǎn),及時(shí)進(jìn)行引導(dǎo)和激勵(lì),并根據(jù)具體教學(xué)對(duì)象,適當(dāng)調(diào)整教與學(xué),使教學(xué)過程真正成為生成教育智慧和增強(qiáng)實(shí)踐能力的過程.讓預(yù)設(shè)與生成齊飛.
(六)當(dāng)堂達(dá)標(biāo)(練習(xí)二、三 10分鐘)練習(xí)二讓學(xué)生口答,通過練習(xí),鞏固學(xué)生對(duì)直線、射線、線段表示方法的掌握。練習(xí)三讓學(xué)生去黑板板演,教師檢驗(yàn)對(duì)錯(cuò)并重點(diǎn)強(qiáng)調(diào)幾何語(yǔ)言的表述。文字語(yǔ)言和圖形語(yǔ)言之間的轉(zhuǎn)化是難點(diǎn),著重練習(xí)文字語(yǔ)言向圖形語(yǔ)言的轉(zhuǎn)化,提高幾何語(yǔ)言的理解與運(yùn)用能力。當(dāng)堂達(dá)標(biāo)是檢查學(xué)習(xí)效果、鞏固知識(shí)、提高能力的重要手段。通過練習(xí),學(xué)生會(huì)體驗(yàn)到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時(shí)獲得信息反饋,以便課下查漏補(bǔ)缺。 (七)小結(jié)(3分鐘)教師提問“這節(jié)課我們學(xué)了哪些知識(shí)?”請(qǐng)學(xué)生回答,教師做適當(dāng)補(bǔ)充。課堂小結(jié)對(duì)一節(jié)課起著“畫龍點(diǎn)晴”的作用,它能體現(xiàn)一節(jié)課所講的知識(shí)和數(shù)學(xué)思想。因此,在小結(jié)時(shí),教師引導(dǎo)學(xué)生概括本節(jié)內(nèi)容的重點(diǎn)。
(一)觀圖激趣、設(shè)疑導(dǎo)入 師:上一節(jié)我們已經(jīng)認(rèn)識(shí)了比例,知道兩個(gè)比怎樣才能組成比例,下面請(qǐng)同學(xué)們判斷一下下面各組的比能否組成比例。(1)0.4∶和1.2∶2 (2)和生1:根據(jù)比例的意義,第(1)題,這兩個(gè)比的比值相等,都是0.6,所以(1)題的兩個(gè)比能組成比例。生2:我來回答第(2)題,我也利用比例的意義,求出=5,=6,這兩個(gè)比的比值不相等,所以第(2)題的兩個(gè)比不能組成比例。師:這兩名同學(xué)回答的真好,有理有據(jù),讓我們?yōu)樗麄兊谋憩F(xiàn)鼓掌!師:今天這節(jié)課,我們將共同來學(xué)習(xí)用另一種方法來判斷兩個(gè)比能否組成比例,同學(xué)們想知道是什么方法嗎?生:想知道。師:那就是比例的基本性質(zhì)(板書課題:比例的基本性質(zhì))?!驹O(shè)計(jì)意圖】復(fù)習(xí)學(xué)生已有的知識(shí),喚醒學(xué)生已有學(xué)習(xí)經(jīng)驗(yàn),教師的提問吸引了學(xué)生的注意力,也引發(fā)學(xué)生的好奇心,為學(xué)習(xí)新知識(shí)開了一個(gè)好頭。
(四)引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分?jǐn)?shù)的基本性質(zhì)(2)培養(yǎng)學(xué)生觀察--探索--抽象--概括的能力。2.教學(xué)安排(1)提出問題:通過驗(yàn)證這兩組分?jǐn)?shù)確實(shí)相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學(xué)生的觀察結(jié)果是什么,教師要順應(yīng)學(xué)生的思維,針對(duì)學(xué)生的觀察方法,進(jìn)行引導(dǎo)性評(píng)價(jià)①觀察角度的獨(dú)特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導(dǎo)層次一:你發(fā)現(xiàn)了1/2和2/4兩個(gè)數(shù)之間的這樣的規(guī)律,在這個(gè)等式中任意兩個(gè)數(shù)都有這樣的規(guī)律嗎?引導(dǎo)學(xué)生對(duì)1/2和4/8、2/4和4/8每組中兩個(gè)數(shù)之間規(guī)律的觀察。引導(dǎo)層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導(dǎo)層次三:用自己的話把你觀察到的規(guī)律概括出來。
三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是高中數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具 高考試題中近一半的試題與這三個(gè)“二次”問題有關(guān) 本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法。課程目標(biāo)1. 通過探索,使學(xué)生理解二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。2. 使學(xué)生能夠運(yùn)用二次函數(shù)及其圖像,性質(zhì)解決實(shí)際問題. 3. 滲透數(shù)形結(jié)合思想,進(jìn)一步培養(yǎng)學(xué)生綜合解題能力。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系;2.邏輯推理:一元二次不等式恒成立問題;3.數(shù)學(xué)運(yùn)算:解一元二次不等式;4.數(shù)據(jù)分析:一元二次不等式解決實(shí)際問題;5.數(shù)學(xué)建模:運(yùn)用數(shù)形結(jié)合的思想,逐步滲透一元二次函數(shù)與一元二次方程,一元二次不等式之間的聯(lián)系。
a.第127頁(yè)隨堂練習(xí)1第(1)題。b.一個(gè)多邊形的邊都相等,這是一個(gè)正多邊形嗎?c.一個(gè)多邊形的內(nèi)角都相等,這是一個(gè)正多邊形嗎?d.所以,一個(gè)相等,也都相等的多邊形才是。(此檢測(cè)主要是讓學(xué)說出多邊形和正多邊形的定義,因?yàn)槭窃谌切?、四邊形的基礎(chǔ)上,定義是一致的,所以不深究。在教材的處理上,把正多邊形放在了前面,兩個(gè)較為簡(jiǎn)單的概念放在一起,便于學(xué)生理解和掌握。)2.各組展示四邊形的內(nèi)角和的計(jì)算方法。3.各組展示五邊形的內(nèi)角和的計(jì)算方法。(由各組派代表上臺(tái)板演,其它組補(bǔ)充,真正讓學(xué)生動(dòng)起來)4.各組選擇前面最優(yōu)的方法,口述六邊形、七邊形的內(nèi)角和的算法。(以此上,學(xué)生可以利用對(duì)比的方法,選擇作出過三角形的一個(gè)頂點(diǎn)的對(duì)角線的方法,讓學(xué)生探索發(fā)現(xiàn)規(guī)律。)5.據(jù)此,你們認(rèn)為n邊形的內(nèi)角和應(yīng)該怎樣計(jì)算。(注意n的條件)五、當(dāng)堂訓(xùn)練。