【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡(jiǎn)不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書(shū)設(shè)計(jì)1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會(huì)到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來(lái)的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵(lì)學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.
方法總結(jié):作平移圖形時(shí),找關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對(duì)應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對(duì)應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);④按原圖形順序依次連接對(duì)應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書(shū)設(shè)計(jì)1.平移的定義在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移.2.平移的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)平移所得的圖形中,對(duì)應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對(duì)應(yīng)線段平行(或在一條直線上)且相等,對(duì)應(yīng)角相等.3.簡(jiǎn)單的平移作圖教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問(wèn)題抽象成圖形問(wèn)題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識(shí)靈活運(yùn)用到生活中.
解析:整個(gè)陰影部分比較復(fù)雜和分散,像此類問(wèn)題通常使用割補(bǔ)法來(lái)計(jì)算.連接BD、AC,由正方形的對(duì)稱性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使整個(gè)陰影部分割補(bǔ)成半個(gè)正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個(gè)面積可以計(jì)算的規(guī)則圖形.三、板書(shū)設(shè)計(jì)1.簡(jiǎn)單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動(dòng)手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
教學(xué)目標(biāo):1.會(huì)畫直棱柱(僅限于直三棱柱和直四棱柱)的三種視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。2. 會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握直棱柱的三視圖的畫法。能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法一、實(shí)物觀察、空間想像觀察:請(qǐng)同學(xué)們拿出事先準(zhǔn)備好的直三棱柱、直四棱柱,根據(jù)你所擺放的位置經(jīng)過(guò) 想像,再抽象出這兩個(gè)直棱柱的主視圖,左視圖和俯視圖。繪制:請(qǐng)你將抽象出來(lái)的三種視圖畫出來(lái),并與同伴交流。比較:小亮畫出了其中一個(gè)幾何體的主視圖、左視圖和俯視圖,你認(rèn)為他畫的對(duì)不對(duì)?談?wù)勀愕目捶?。拓展:?dāng)你手中的兩個(gè)直棱柱擺放的角度變化時(shí),它們的三種視圖是否會(huì)隨之改變?試一試。
解析:熟記常見(jiàn)幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L(zhǎng)方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見(jiàn)部分和看不見(jiàn)部分的輪廓線.在得出原立體圖形的形狀后,也可以反過(guò)來(lái)想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
故最少由9個(gè)小立方體搭成,最多由11個(gè)小立方體搭成;(3)左視圖如右圖所示.方法點(diǎn)撥:這類問(wèn)題一般是給出一個(gè)由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個(gè)幾何體可能的形狀.解答時(shí)可以先由三種視圖描述出對(duì)應(yīng)的該物體,再由此得出組成該物體的部分個(gè)體的個(gè)數(shù).三、板書(shū)設(shè)計(jì)視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長(zhǎng)對(duì)正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過(guò)觀察、操作、猜想、討論、合作等活動(dòng),使學(xué)生體會(huì)到三視圖中位置及各部分之間大小的對(duì)應(yīng)關(guān)系.通過(guò)具體活動(dòng),積累學(xué)生的觀察、想象物體投影的經(jīng)驗(yàn),發(fā)展學(xué)生的動(dòng)手實(shí)踐能力、數(shù)學(xué)思考能力和空間觀念.
教學(xué)目標(biāo):1.經(jīng)歷由實(shí)物抽象出幾何體的過(guò)程,進(jìn)一步發(fā)展空間觀念。2.會(huì)畫圓柱、圓錐、球的三視圖,體會(huì)這幾種幾何體與其視圖之間的相互轉(zhuǎn)化。3.會(huì)根據(jù)三視圖描述原幾何體。教學(xué)重點(diǎn):掌握部分幾何體的三視圖的畫法,能根據(jù)三視圖描述原幾何體。教學(xué)難點(diǎn):幾何體與視圖之間的相互轉(zhuǎn)化。培養(yǎng)空間想像觀念。課型:新授課教學(xué)方法:觀察實(shí)踐法教學(xué)過(guò)程設(shè)計(jì)一、實(shí)物觀察、空間想像設(shè)置:學(xué)生利用準(zhǔn)備好的大小相同的正方形方塊,搭建一個(gè)立體圖形,讓同學(xué)們畫出三視圖。而后,再要求學(xué)生利用手中12塊正方形的方塊實(shí)物,搭建2個(gè)立體圖形,并畫出它們的三視圖。學(xué)生分小組合作交流、觀察、作圖。議一議1.圖5-14中物體的形狀分別可以看成什么樣的幾何體?從正面、側(cè)面、上面看這些幾何體,它們的形狀各是什么樣的?2.在圖5-15中找出圖5-14中各物體的主視圖。3.圖5-14中各物體的左視圖是什么?俯視圖呢?
解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書(shū)設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點(diǎn)、連線(描點(diǎn)法)通過(guò)學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.
觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對(duì)稱圖形嗎?如果是,請(qǐng)找出對(duì)稱中心.反比例函數(shù)圖象是軸對(duì)稱圖形嗎?如果是,請(qǐng)指出它的對(duì)稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對(duì)于函數(shù) , 兩支曲線分別位于哪個(gè)象限內(nèi)?對(duì)于函數(shù) ,兩支曲線又分別位于哪個(gè)象限內(nèi)?怎樣區(qū)別這兩個(gè)函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動(dòng)中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過(guò)程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時(shí),它的圖像位于一、三象限內(nèi),當(dāng)k<0時(shí),它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示.理解表中的正負(fù)號(hào)表示的含義,根據(jù)條件計(jì)算出每天的水位即可求解;(2)只要觀察星期日的水位是正負(fù)即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題.探究點(diǎn)二:有理數(shù)的加減混合運(yùn)算在生活中的其他應(yīng)用
方法總結(jié):當(dāng)某一事件A發(fā)生的可能性大小與相關(guān)圖形的面積大小有關(guān)時(shí),概率的計(jì)算方法是事件A所有可能結(jié)果所組成的圖形的面積與所有可能結(jié)果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關(guān)鍵是要找準(zhǔn)兩點(diǎn):(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點(diǎn)二:與面積有關(guān)的概率的應(yīng)用如圖,把一個(gè)圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個(gè)扇形區(qū)域,自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤,停止后指針落在B區(qū)域的概率為_(kāi)_______.解析:∵一個(gè)圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個(gè)扇形區(qū)域,∴圓形轉(zhuǎn)盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書(shū)設(shè)計(jì)1.與面積有關(guān)的等可能事件的概率P(A)= 2.與面積有關(guān)的概率的應(yīng)用本課時(shí)所學(xué)習(xí)的內(nèi)容多與實(shí)際相結(jié)合,因此教學(xué)過(guò)程中要引導(dǎo)學(xué)生展開(kāi)豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問(wèn)題,并進(jìn)行合理的整合歸納,選擇適宜的數(shù)學(xué)方法來(lái)解決問(wèn)題
1.進(jìn)一步理解概率的意義并掌握計(jì)算事件發(fā)生概率的方法;(重點(diǎn))2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點(diǎn))一、情境導(dǎo)入一個(gè)箱子中放有紅、黃、黑三個(gè)小球,三個(gè)人先后去摸球,一人摸一次,一次摸出一個(gè)小球,摸出后放回,摸出黑色小球?yàn)橼A,那么這個(gè)游戲是否公平?二、合作探究探究點(diǎn)一:與摸球有關(guān)的等可能事件的概率【類型一】 摸球問(wèn)題一個(gè)不透明的盒子中放有4個(gè)白色乒乓球和2個(gè)黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機(jī)摸出1個(gè)乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個(gè)乒乓球,其中2個(gè)黃色的,任意摸出1個(gè),則P(摸到黃色乒乓球)=26=13.故選C.方法總結(jié):概率的求法關(guān)鍵是找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識(shí)相關(guān)的問(wèn)題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機(jī)取的一個(gè)數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35
方法總結(jié):絕對(duì)值小于1的數(shù)也可以用科學(xué)記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負(fù)整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個(gè)不為零的數(shù)前面的0的個(gè)數(shù)所決定.【類型二】 將用科學(xué)記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點(diǎn)向左移動(dòng)相應(yīng)的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結(jié):將科學(xué)記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a(bǔ)的小數(shù)點(diǎn)向左移動(dòng)n位所得到的數(shù).三、板書(shū)設(shè)計(jì)用科學(xué)記數(shù)法表示絕對(duì)值小于1的數(shù):一般地,一個(gè)小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負(fù)整數(shù).從本節(jié)課的教學(xué)過(guò)程來(lái)看,結(jié)合了多種教學(xué)方法,既有教師主導(dǎo)課堂的例題講解,又有學(xué)生主導(dǎo)課堂的自主探究.課堂上學(xué)習(xí)氣氛活躍,學(xué)生的學(xué)習(xí)積極性被充分調(diào)動(dòng),在拓展學(xué)生學(xué)習(xí)空間的同時(shí),又有效地保證了課堂學(xué)習(xí)質(zhì)量
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對(duì)值的混合運(yùn)算計(jì)算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)是解答此題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個(gè)不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負(fù)整數(shù)次冪:任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個(gè)數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計(jì)算具體問(wèn)題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時(shí)要多舉幾個(gè)例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗(yàn)自主探究的樂(lè)趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
問(wèn)題:2015年9月24日,美國(guó)國(guó)家航空航天局(下簡(jiǎn)稱:NASA)對(duì)外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時(shí)間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽(yáng)系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開(kāi)普勒186,距離地球492光年.1光年是光經(jīng)過(guò)一年所行的距離,光的速度大約是3×105km/s.問(wèn):這顆行星距離地球多遠(yuǎn)(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問(wèn)題:“10×105×107×102”等于多少呢?二、合作探究探究點(diǎn):同底數(shù)冪的乘法【類型一】 底數(shù)為單項(xiàng)式的同底數(shù)冪的乘法計(jì)算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(3)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過(guò)一段對(duì)話設(shè)置疑問(wèn),巧設(shè)懸念,激發(fā)起學(xué)生獲取知識(shí)的求知欲,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生由被動(dòng)接受知識(shí)轉(zhuǎn)為主動(dòng)學(xué)習(xí),從而提高學(xué)習(xí)效率.然后讓學(xué)生自主探究,在教學(xué)過(guò)程中充分發(fā)揮學(xué)生的主動(dòng)性,讓學(xué)生提出猜想.在教學(xué)中,教師通過(guò)必要的提示指明學(xué)生思考問(wèn)題的方向,在學(xué)生提出驗(yàn)證三角形內(nèi)角和的不同方法時(shí),教師注意讓學(xué)生上臺(tái)演示自己的操作過(guò)程和說(shuō)明自己的想法,這樣有助于學(xué)生接受三角形的內(nèi)角和是180°這一結(jié)論
方法總結(jié):絕對(duì)值的化簡(jiǎn)首先要判斷絕對(duì)值符號(hào)里面的式子的正負(fù),然后根據(jù)絕對(duì)值的性質(zhì)將絕對(duì)值的符號(hào)去掉,最后進(jìn)行化簡(jiǎn).此類問(wèn)題就是根據(jù)三角形的三邊關(guān)系,判斷絕對(duì)值符號(hào)里面式子的正負(fù),然后進(jìn)行化簡(jiǎn).三、板書(shū)設(shè)計(jì)1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問(wèn)題的過(guò)程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問(wèn)題讓學(xué)生自己動(dòng)手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過(guò)觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既增加了學(xué)習(xí)興趣,又增強(qiáng)了學(xué)生的動(dòng)手能力
解:(1)電動(dòng)車的月產(chǎn)量y為隨著時(shí)間x的變化而變化,有一個(gè)時(shí)間x就有唯一一個(gè)y與之對(duì)應(yīng),月產(chǎn)量y是時(shí)間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實(shí)現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢(shì),實(shí)質(zhì)是觀察自變量增大時(shí),因變量是隨之增大還是減?。?、板書(shū)設(shè)計(jì)1.常量與變量:在一個(gè)變化過(guò)程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來(lái)描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個(gè)重要的量,對(duì)于我們所熟悉的變化,在用了這兩個(gè)量的描述之后更加鮮明.本節(jié)是學(xué)好本章的基礎(chǔ),教學(xué)中立足于學(xué)生的認(rèn)知基礎(chǔ),激發(fā)學(xué)生的認(rèn)知沖突,提升學(xué)生的認(rèn)知水平,使學(xué)生在原有的知識(shí)基礎(chǔ)上迅速遷移到新知上來(lái)
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點(diǎn)可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點(diǎn),∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識(shí).線段垂直平分線上的點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等,利用它可以證明線段相等.探究點(diǎn)二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個(gè)公共汽車站,A,B是路邊兩個(gè)新建小區(qū),這個(gè)公共汽車站C建在什么位置,能使兩個(gè)小區(qū)到車站的路程一樣長(zhǎng)(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過(guò)本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問(wèn)題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練