解:設(shè)另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結(jié):因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設(shè)計1.因式分解的概念把一個多項式轉(zhuǎn)化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過對比學(xué)習(xí)加深對新知識的理解.教學(xué)時采用新課探究的形式,鼓勵學(xué)生參與到課堂教學(xué)中,以興趣帶動學(xué)習(xí),提高課堂學(xué)習(xí)效率.
說教學(xué)難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學(xué)生的年齡和認(rèn)知特點,教材中“圖形的放大與縮小”從對應(yīng)邊的比相等來進(jìn)行安排,而對應(yīng)角的不變也是形狀不變必備的條件,是學(xué)生體會圖形的相似所必需的。學(xué)生在學(xué)習(xí)的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮???)所以我把“學(xué)生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應(yīng)邊的比相等,對應(yīng)角不變)”做為本節(jié)課的難點。說教法、學(xué)法:通過直觀演示,情景激趣,結(jié)合生活讓學(xué)生形成感性認(rèn)識;引導(dǎo)學(xué)生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學(xué)習(xí)、驗證等過程形成理性認(rèn)識。教學(xué)過程:(略)
接著,引導(dǎo)學(xué)生回答命題1的題設(shè)、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學(xué)表達(dá)式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應(yīng)高。求證:AD/A/D/=K首先讓學(xué)生回憶,證明線段成比例學(xué)過哪些方法,接著引導(dǎo)學(xué)生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學(xué)生能找到含對應(yīng)高和對應(yīng)邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應(yīng)有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學(xué)生口述教師板書規(guī)范的證明過程。接著問學(xué)生還有哪些證明方法?同理可證得其他兩邊上的對應(yīng)高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學(xué)表達(dá)式和證明方法與命題1類似,所以為了提高教學(xué)效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導(dǎo)學(xué)生課堂練習(xí)證明這兩個命題。
提示:要學(xué)會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關(guān)系列方程。2.Flash動畫,情景再現(xiàn).3.學(xué)法小結(jié):(1)對較復(fù)雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關(guān)系,這樣,條理比較清楚.(2)借助方程組解決實際問題.設(shè)計意圖:生動的情景引入,意在激發(fā)學(xué)生的學(xué)習(xí)興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學(xué)法小結(jié),著重強調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習(xí)慣。實際效果:動畫引入,使數(shù)字問題變的更有趣,確實有效地激發(fā)了學(xué)生的興趣,學(xué)生參與熱情很高;借助圖表分析,有效地克服了難點,學(xué)生基本都能借助圖表分析,在老師的引導(dǎo)下列出方程組。4.變式訓(xùn)練師生共同研究下題:有一個三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)?。矗担挥种傥粩?shù)字的9倍比由十位數(shù)字和個位數(shù)字組成的兩位數(shù)?。常嚽笤瓉淼模澄粩?shù).
將一個圓分成三個大小相同的扇形,你能計算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴交流設(shè)計意圖:通過引導(dǎo)學(xué)生根據(jù)圓心角與圓心角的比例確定扇形面積與整圓的面積關(guān)系為后面學(xué)習(xí)扇形面積公式做鋪墊,體現(xiàn)知識的延續(xù)性。(六)、鞏固練習(xí).如圖,把一圓分成三個扇形,你能求出這三個扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結(jié)學(xué)完這節(jié)課你有哪些收獲?設(shè)計意圖:通過小節(jié)讓學(xué)生對所學(xué)知識進(jìn)行梳理,使所學(xué)知識能合理地納入自身的知識結(jié)構(gòu)。(八) 布置作業(yè):中等學(xué)生:P125. 1優(yōu)等生: P125. 2,3我針對學(xué)生素質(zhì)的差異設(shè)計了有層次的訓(xùn)練題,留給學(xué)生課后自主探究,這樣即使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,從而達(dá)到拔尖和“減負(fù)”的目的。
解:(1)設(shè)x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設(shè)x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問題中的相等關(guān)系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設(shè)計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學(xué)過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學(xué)的應(yīng)用與價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識、團(tuán)隊精神和克服困難的勇氣.
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,有效地增強了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準(zhǔn)確識圖是解題的關(guān)鍵.三、板書設(shè)計1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過一段對話設(shè)置疑問,巧設(shè)懸念,激發(fā)起學(xué)生獲取知識的求知欲,充分調(diào)動學(xué)生學(xué)習(xí)的積極性,使學(xué)生由被動接受知識轉(zhuǎn)為主動學(xué)習(xí),從而提高學(xué)習(xí)效率.然后讓學(xué)生自主探究,在教學(xué)過程中充分發(fā)揮學(xué)生的主動性,讓學(xué)生提出猜想.在教學(xué)中,教師通過必要的提示指明學(xué)生思考問題的方向,在學(xué)生提出驗證三角形內(nèi)角和的不同方法時,教師注意讓學(xué)生上臺演示自己的操作過程和說明自己的想法,這樣有助于學(xué)生接受三角形的內(nèi)角和是180°這一結(jié)論
方法總結(jié):在等腰三角形有關(guān)計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.三、板書設(shè)計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點,既增加了學(xué)習(xí)興趣,又增強了學(xué)生的動手能力
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個為正,則另一個就用負(fù)表示.理解表中的正負(fù)號表示的含義,根據(jù)條件計算出每天的水位即可求解;(2)只要觀察星期日的水位是正負(fù)即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實際問題轉(zhuǎn)化成數(shù)學(xué)問題.探究點二:有理數(shù)的加減混合運算在生活中的其他應(yīng)用
A、B兩碼頭相距140km,一艘輪船在其間航行,順?biāo)叫杏昧?h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結(jié):本題關(guān)鍵是找到各速度之間的關(guān)系,順?biāo)伲届o速+水速,逆速=靜速-水速;再結(jié)合公式“路程=速度×時間”列方程組.三、板書設(shè)計“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學(xué)思想方法是數(shù)學(xué)學(xué)習(xí)的靈魂.教學(xué)中注意關(guān)注蘊含其中的數(shù)學(xué)思想方法(如化歸方法),介紹化歸思想及其運用,既可提高學(xué)生的學(xué)習(xí)興趣,開闊視野,同時也提高學(xué)生對數(shù)學(xué)思想的認(rèn)識,提升解題能力.
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計:(1) 引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時間;(2) 充分運用多媒體的優(yōu)勢進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學(xué)生對比和探究。學(xué)生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
Ⅵ.活動與探究某種“15選5”的彩票的獲獎號碼是從1~15這15個數(shù)字小選擇5個數(shù)字(可以重復(fù)),若彩民所選擇的5個數(shù)字恰與獲獎號碼相同,即可獲得特等獎.小明觀察了最近100期獲獎號碼,發(fā)現(xiàn)其中竟有51期有重號(同一期獲獎號碼有2個或2個以上的數(shù)字相同),66期有連號(同一期獲獎號碼中有2個或2個以上的數(shù)字相鄰).他認(rèn)為獲獎號碼不應(yīng)該有這么多重號和連號,獲獎號碼可能不是隨機產(chǎn)生的,有失公允.小明的觀點有道理嗎?重號的概率大約是多少?利用計算器模擬實驗可以估計重號的概率.[過程]兩人組成一個小組,利用計算器產(chǎn)生1~15之間的隨機數(shù).并記錄下來,每產(chǎn)生5個隨機數(shù)為一次實驗,每組做10次實驗,看看有幾次重號和連號.將全班的數(shù)據(jù)匯總集中起來,就可估計出1~15之間的整數(shù)中隨機抽出5個數(shù)出現(xiàn)重號和連號的概率.
(三)如圖, 中, ,AB=6厘米,BC=8厘米,點 從點 開始,在 邊上以1厘米/秒的速度向 移動,點 從點 開始,在 邊上以2厘米/秒的速度向點 移動.如果點 , 分別從點 , 同時出發(fā),經(jīng)幾秒鐘,使 的面積等于 ?拓展:如果把BC邊的長度改為7cm,對本題的結(jié)果有何影響?(四)本課小結(jié)列方程解應(yīng)用題的一般步驟:1、 審題:分析相關(guān)的量2、 設(shè)元:把相關(guān)的量符號化,設(shè)定一個量為X,并用含X的代數(shù)式表示相關(guān)的量3、 列方程:把量的關(guān)系等式化4、 解方程5、 檢驗并作答(五)布置作業(yè)1、請欣賞一道借用蘇軾詩詞《念奴嬌·赤壁懷古》的頭兩句改編而成的方程應(yīng)用題, 解讀詩詞(通過列方程,算出周瑜去世時的年齡)大江東去浪淘盡,千古風(fēng)流數(shù)人物,而立之年督東吳,早逝英年兩位數(shù),十位恰小個位三,個位平方與壽符,哪位學(xué)子算得快,多少年華屬周瑜?本題強調(diào)對古文化詩詞的閱讀理解,貫通數(shù)學(xué)的實際應(yīng)用。有兩種解題思路:枚舉法和方程法。
在解決問題的過程中,學(xué)生使用到了生活中常見的工具——標(biāo)桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺到利用身邊的工具完全可以達(dá)到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當(dāng)學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會形成主動尋求知識的內(nèi)在動力。學(xué)生在這種學(xué)習(xí)情境中主動學(xué)習(xí)到知識,比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問題意識。問題解決后,教師應(yīng)讓學(xué)生從解決的問題出發(fā),通過對題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問題,這樣不僅讓學(xué)生掌握了更多的知識,還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。
準(zhǔn)備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復(fù)摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復(fù)感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復(fù)聽到消息的可能性是很大的,當(dāng)然重復(fù)感染的可能性也是很大的。
故直線l2對應(yīng)的函數(shù)關(guān)系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標(biāo)系內(nèi)畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應(yīng)用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來,既考查了基本知識,又不局限于基本知識.三、板書設(shè)計利用二元一次方程組確定一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式:y=kx+b(k≠0);2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進(jìn)而得到一次函數(shù)的表達(dá)式.通過教學(xué),進(jìn)一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉(zhuǎn)化.通過對本節(jié)課的探究,培養(yǎng)學(xué)生的觀察能力、識圖能力以及語言表達(dá)能力.