1、 教材的地位和作用本課教材所處位置,是小學所學算術(shù)數(shù)之后數(shù)的范圍的第一次擴充,是算術(shù)數(shù)到有理數(shù)的銜接與過渡,并且是以后學習數(shù)軸、相反數(shù)、絕對值以及有理數(shù)運算的基礎(chǔ).2、 教學目標①理解有理數(shù)產(chǎn)生的必然性、合理性及有理數(shù)的分類;②能辨別正、負數(shù),感受規(guī)定正、負的相對性;③體驗中國古代在數(shù)的發(fā)展方面的貢獻.3、 教學重點和難點教學重點:理解正數(shù)和負數(shù)的概念和有理數(shù)概念.教學難點:對負數(shù)概念的理解和有理數(shù)的分類.二、 教學分析鑒于初一年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學法及情感教學,創(chuàng)設(shè)問題情境,引導學生主動思考,用大量的實例和生動的語言激發(fā)學生學習興趣,調(diào)節(jié)學習情緒。
(五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學重點讓學生獨立完成: 1、課本23頁練習1、2 2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向?qū)W生進一步滲透數(shù)形結(jié)合的思想讓學生討論: 3、數(shù)軸上的點P與表示有理數(shù)3的點A距離是2, (1)試確定點P表示的有理數(shù); (2)將A向右移動2個單位到B點,點B表示的有理數(shù)是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數(shù)是多少? 先讓學生通過小組討論得出結(jié)果,通過以上練習使學生在掌握知識的基礎(chǔ)上達到靈活運用,形成一定的能力。 (六)、歸納小結(jié),強化思想: 根據(jù)學生的特點,師生共同小結(jié): 1、為了鞏固本節(jié)課的教學重點提問:你知道什么是數(shù)軸嗎?你會畫數(shù)軸嗎?這節(jié)課你學會了用什么來表示有理數(shù)? 2、數(shù)軸上,會不會有兩個點表示同一個有理數(shù)?會不會有一個點表示兩個不同的有理數(shù)? 讓學生牢固掌握一個有理數(shù)只對應數(shù)軸上的一個點,并能說出數(shù)軸上已知點所表示的有理數(shù)。
(三)學以致用,鞏固新知為鞏固本節(jié)的教學重點我再次給出三道問題: 1)絕對值是7的數(shù)有幾個?各是什么?有沒有絕對值是-2的數(shù)?2)絕對值是0的數(shù)有幾個?各是什么? 3)絕對值小于3的整數(shù)一共有多少個?先讓學生通過小組討論得出結(jié)果,通過以上練習使學生在掌握知識的基礎(chǔ)上達到靈活運用,形成一定的能力。(四)總結(jié)歸納,知識升華小結(jié)時我也將充分發(fā)揮學生學習的主動性,發(fā)揮教師在教學的啟發(fā)引導作用,和學生一起合作把本節(jié)課所學的內(nèi)容做一個小結(jié)。(五)布置作業(yè),拓展新知布置作業(yè)不是目的,目的是使學生能夠更好地掌握并運用本節(jié)課的內(nèi)容。所以我會布置這樣一個作業(yè):請學生回家在父母的幫助下,找出南方和北方各三個城市的溫度,并比較這些溫度的大小,并寫出每個溫度的絕對值進行比較
五、課堂設(shè)計理念本節(jié)課著力體現(xiàn)以下幾個方面:1、突出問題的應用意識。在各個環(huán)節(jié)的安排上都設(shè)計成一個個問題,使學生能圍繞問題展開討思考、討論,進行學習。2、體現(xiàn)學生的主體意識。讓學生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學的進步;讓學生通過合作交流,得出問題的不同解法;讓學生對一節(jié)課的學習內(nèi)容、方法、注意點等進行歸納。3、體現(xiàn)學生思維的層次性。教師首先引導學生嘗試用算術(shù)方法解決問題,然后再引導學生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學生思維的層次性。4、滲透建模思想。把實際問題中的數(shù)量關(guān)系用方程形式表示出來,就是建立一種數(shù)學模型,教師有意識地按設(shè)未知數(shù)、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力。
最后我引導學生觀察自己手中的量角器引導學生在測量的時候有時用度的單位還不夠就必須用到比度還小的單位分和秒,進而明白度分秒之間的轉(zhuǎn)換關(guān)系,并且引導學生對比和度分秒進制一樣的還有時間。從而進入到例題2的講解。接下來讓學生通過隨堂練習來加強和鞏固本節(jié)課的內(nèi)容。提高學生對本節(jié)課知識的系統(tǒng)綜合。(四)歸納總結(jié)。小結(jié)主要由學生完成,我作出適當?shù)难a充。最后總結(jié)角的比較表方法及估測和某些角之間的等量關(guān)系的書寫基本的幾何語句并能根據(jù)語句畫出幾何圖形。(五)布置作業(yè)通過作業(yè)及時了解學生學習效果,調(diào)整教學安排。使學生通過獨立思考,自我評價學習效果;學會反思,發(fā)現(xiàn)問題;并試著通過閱讀教材、查找資料或與同伴交流解決問題。
一、教材分析:本節(jié)課選自北京師范大學教育出版社七年級上冊第五章第三節(jié),是學生學習一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數(shù)量關(guān)系,建立一元一次方程并用之解決實際問題,是學生運用數(shù)學知識解決生活中實際問題中的典型素材,可提高學生解決問題的能力,提高學習數(shù)學的興趣,形成學以致用的思想,認識方程運用模型的重要環(huán)節(jié)。二、學情分析:通過前幾節(jié)解方程的學習,學生已經(jīng)掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關(guān)系列出方程解應用題,但學生在列方程解應用題時常常會遇到從題設(shè)條件中找不到所依據(jù)的等量關(guān)系,或雖能找到等量關(guān)系,但不能列出方程這樣的問題,因此,在教師的引導下,通過學生親自動手制作模型,自主探索在模型變化過程中的等量關(guān)系,建立方程,從而將圖形問題代數(shù)化。
通過有針對性的練習,鞏固所學,拓展知識,形成應用能力。本環(huán)節(jié)主要是針對學生對本節(jié)內(nèi)容的掌握程度進行檢測反饋。學生在經(jīng)過自學、置疑、解疑、教師點撥后作一套本節(jié)的檢測題。做完后,教師或?qū)W生給出答案,并給予簡單解析。教師對檢測成績做以簡單的統(tǒng)計,了解本節(jié)課的學習效果。檢測題必須精心設(shè)計與安排,因為學生在做經(jīng)過精心安排的檢測題時,不僅在積極地掌握數(shù)學知識,而且能獲得進行創(chuàng)造性思維的能力。要充分發(fā)揮檢測題的功能,設(shè)計檢測題時應由淺入深、難易適當、逐步提高、突出重點與關(guān)鍵、注意題型的搭配。在試題設(shè)計上,應將知識、素質(zhì)、能力的考查統(tǒng)一起來,既有知識性、分析性題目,又有應用性、直覺形象性題目。提高創(chuàng)新性題型的比重和難度,少問“是什么”,多問“為什么”、“對某些問題,你以為如何”等,增強答案的發(fā)散性。
按此規(guī)律,第n個式子是 。師生活動:學生通過觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結(jié)論。設(shè)計意圖:進一步理解字母表示數(shù)的意義,理解用含有字母的數(shù)學式子表示實際問題中的數(shù)量關(guān)系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動:教師舉例說明比如:如果p表示我們班的人數(shù),我們班80%的同學喜歡上數(shù)學課,那么0.8p 就可以表示我們班喜歡數(shù)學課的人數(shù)。學生思考、交流后發(fā)言五、練習檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個數(shù)比a的 倍小5,則這個數(shù)為 ;(3)全校學生總數(shù)是x,其中女生占總數(shù)52%,則女生人數(shù)是 ,男生人數(shù)是 ;(4)某校前年購買計算機 x 臺,去年購買數(shù)量是前年的2倍,今年購買數(shù)量又是去年的2倍,則學校三年共購買計算機 臺;(5)某班有a名學生,現(xiàn)把一批圖書分給全班學生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個兩位數(shù),十位上的數(shù)字為a,個位上的數(shù)字b,則這個兩位數(shù)為 .師生活動:學生板演,師生共同評價總結(jié)注意(5)帶分數(shù)化假分數(shù)設(shè)計意圖:進一步提高用含有字母的式子表示實際問題中的數(shù)量關(guān)系的能力。
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內(nèi)容,為以后的學習奠定基礎(chǔ)
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關(guān)鍵.三、板書設(shè)計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎(chǔ)上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點
方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設(shè)計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時,應結(jié)合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.
問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計:(1) 引導學生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學生充分考慮的時間;(2) 充分運用多媒體的優(yōu)勢進行教學,使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學生對比和探究。學生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當k>0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當k<0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
說教學難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學生的年齡和認知特點,教材中“圖形的放大與縮小”從對應邊的比相等來進行安排,而對應角的不變也是形狀不變必備的條件,是學生體會圖形的相似所必需的。學生在學習的過程中很有可能會質(zhì)疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮小?)所以我把“學生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應邊的比相等,對應角不變)”做為本節(jié)課的難點。說教法、學法:通過直觀演示,情景激趣,結(jié)合生活讓學生形成感性認識;引導學生經(jīng)過觀察、猜想、分析、操作、質(zhì)疑、小組交流、合作學習、驗證等過程形成理性認識。教學過程:(略)
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.
探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設(shè)原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關(guān)系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結(jié)合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.
5、板書設(shè)計 §1.4船有觸礁的危險嗎 一、船布觸礁的危險嗎 1.根據(jù)題意,畫出示意圖.將實際問題轉(zhuǎn)化為數(shù)學問題. 2.用三角函數(shù)和方程的思想解決關(guān)于直角三角形的問題. 3.解釋最后的結(jié)果. 二、測量塔高 三、改造樓梯 五布置課后作業(yè): 習題1.6第12 3題 六、設(shè)計說明 具有現(xiàn)實意義和挑戰(zhàn)性的內(nèi)容的設(shè)計,激發(fā)學生的學習興趣,使學生樂學。 開放性實踐問題和分層作業(yè)的設(shè)置,滿足每個學生的學習需求,使學生愿學。 多樣的學習方式和適時引導,提高學生的學習質(zhì)量,使學生能學。 背景多樣,層層遞進,適時反思,發(fā)展學生的數(shù)學思維能力,使學生活學。 當學生樂學、愿學、能學、活學時,就將學會學習,將學習當成樂趣,作為生命中不可或缺的部分,也為學生終生學習奠定良好的基礎(chǔ)。
課程課題隨機事件和概率授課教師李丹丹學時數(shù)2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎(chǔ)上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設(shè) 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件
四.知識梳理談談用一元二次方程解決例1實際問題的方法。五、目標檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學校計劃新建的長方形花圃的面積多1平方米,請你給出你認為合適的三種不同的方案.(2)在學校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
一、教學目標1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學生獲得數(shù)學猜想的經(jīng)驗,激發(fā)學生探索知識的興趣,體驗數(shù)學活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習2就是通過讓學生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達到加深理解判定方法2的條件的目的的.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。