【教學目標】1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達自己的思維過程.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的圖形.3.能識別簡單物體的三視圖,會畫立方體及其簡單組合體的三視圖.【基礎(chǔ)知識精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個點表示圓錐的頂點,因為從上往下看圓錐時先看到圓錐的頂點,再看到底面的圓.3.如何畫三視圖 當用若干個小正方體搭成新的幾何體,如何畫這個新的幾何體的三視圖?
方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設(shè)計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力
探究點二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時,兩個角應(yīng)是同一個三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書設(shè)計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內(nèi)角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內(nèi)角利用已經(jīng)學過的知識來推導(dǎo)出新的定理以及運用新的定理解決相關(guān)問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎(chǔ),激發(fā)學習興趣.
證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學生的證明思路,特別是不等關(guān)系的證明題,因為學生接觸較少,因此更需要加強練習.注意事項:學生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個少算的內(nèi)角的取值范圍.探究點二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個外角,求邊數(shù)可直接利用外角和除以這個角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運用一個多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問題.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關(guān)系.2. 相似三角形的周長比,面積比在實際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質(zhì)解決實際問題訓(xùn)練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應(yīng)用意識.●教學重點1.相似三角形的周長比、面積比與相似比關(guān)系的推導(dǎo).2.運用相似三角形的比例關(guān)系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關(guān)系的推導(dǎo)及運用.●教學方法引導(dǎo)啟發(fā)式通過溫故知新,知識遷移,引導(dǎo)學生發(fā)現(xiàn)新的結(jié)論,通過比較、分析,應(yīng)用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質(zhì)時,同樣要注意是對應(yīng)三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設(shè)計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質(zhì)的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結(jié)相似三角形的周長比、面積比與相似比的關(guān)系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓(xùn)練學生的運用能力,增強學生對知識的應(yīng)用意識.
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準對應(yīng)邊.三、板書設(shè)計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應(yīng)用;(重點)2.通過復(fù)習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應(yīng)用這些公式解決一些問題.(難點)一、情境導(dǎo)入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們?nèi)菀卓闯鲞@段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產(chǎn)橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側(cè)面.為了獲得較佳視覺效果,字樣在罐頭盒側(cè)面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()
探究二:100以內(nèi)數(shù)的大小比較。1、 (媒體出示課本第39頁例8雞蛋圖。)師:看這雞蛋圖,誰知道哪邊的雞蛋多一些?你是怎么比較的?(學生可能回答:(1)根據(jù)雞蛋圖比較。(2)根據(jù)數(shù)的順序比較。(3)根據(jù)數(shù)的組成比較。)(根據(jù)學生回答,點擊○媒體出示答案。)2、 師:剛才我們看著雞蛋圖比較了兩個數(shù)的大小,那如果沒有圖,我們會不會直接比較兩個數(shù)的大小呢?我們請計數(shù)器來幫忙,誰來撥?(媒體出示計數(shù)器)師:誰能來說說每個數(shù)位上數(shù)的意義,再進行比較,說說比較的方法。(學生已經(jīng)有了比較20以內(nèi)數(shù)的大小的基礎(chǔ),教師引導(dǎo)學生在此基礎(chǔ)上說出:28是由2個十和8個一組成,26是2個十和6個一組成,所以28>26;或者根據(jù)數(shù)數(shù)時28在26后面,所以28>26。)(點擊表示28的計算器圖,媒體出示28是由2個十和8個一組成;點擊表示26的計算器圖,媒體出示:26是由2個十和6個一組成;點擊“26是由2個十和6個一組成”,媒體出示:28>26。)(師板書:28>26)
活動準備:PPT;錄像;幼兒進行前期的調(diào)查。活動過程:一、談話導(dǎo)入1.用一些詞匯說說“冬天的早晨”。2.出示時間表,“你是幾點起床的”。3.主要提問:在你家里誰是起得最早的人,為什么?4.歸類原因:為家人服務(wù);鍛煉身體;上班,等。二、交流分享1.分享交流采訪的結(jié)果,“幼兒園中,誰是早起的人”。2.老師設(shè)疑,出示鐘點卡“5:00” “4:30”。“猜一猜,誰會在這個時間起床”。
活動目標: 1. 讓幼兒初步感受時間是流逝,一去不復(fù)返的。 2. 感受時間的價值,體會時間的寶貴。 3. 教育幼兒做事情不能拖拉,懂得珍惜時間。 活動準備: 1. 幼兒過生日課件一套。 2. 故事背景、動物圖片一套。 3. 幼兒操作材料:穿珠、玻璃珠、勺子、盤子、橡皮泥、包裝紙。 4. 攝像機一部。 活動過程: 1. 觀看課件“過生日”,了解隨著時間的流逝,人慢慢的長大。 2. 教師引導(dǎo)幼兒討論:“小朋友過了幾個生日?”“每次的生日蛋糕上面蠟燭的數(shù)量有什么不同?”“隨著每次過生日小朋友的樣子發(fā)生了什么變化?”“想一想,自己兩歲生日的時候是什么樣子?”“那你們還能不能回到兩歲的時候?” 3. 教師啟發(fā)幼兒,在日常生活中看到哪些事物隨著時間而變化?(小雞的成長、樹苗的成長……)
爸爸,知道了許多爸爸的本領(lǐng),而父親中有不少人的教育態(tài)度不夠正確或因工作忙碌忽視了對幼兒的關(guān)心,這些從幼兒平時的談話都能聽到。其實爸爸對于孩子的成長起著至關(guān)重要的作用,爸爸來做老師,向孩子們介紹自己的工作,既可以樹立爸爸的形象,了解孩子的世界;又可以間接了解教學,拓展孩子們的視野??芍^一舉多得!所以我就預(yù)設(shè)了此活動讓幼兒更全面地關(guān)注自己的爸爸職業(yè),進而對爸爸產(chǎn)生景仰、熱愛、崇拜等情感。 活動目標: 1、愿意用簡短的語句介紹自己的爸爸,能向同伴介紹爸爸的職業(yè)。 2、幼兒萌發(fā)了解不同行業(yè)的愿望,知道部分行業(yè)的職業(yè)特點。 3、理解爸爸工作的辛苦,樂意大膽表達對爸爸的愛。 活動準備: 幼兒準備:事先請幼兒觀察自己爸爸的日常生活,了解爸爸的職業(yè)。 家長準備:身穿工作服,自帶職業(yè)工具。 教師準備:1、選定王澤宇、王瑜玲、谷子奇的爸爸為我們的目標對象,一方面他們有著繁忙的工作,孩子都交給祖輩帶,另一方面他們的工作
2、活動準備: ⑴幼兒已了解自己小時候和現(xiàn)在在身體的生長發(fā)育上有哪些主要的變化。 ⑵材料:人手一張嬰兒時候的照片及表現(xiàn)自己主要優(yōu)點的錄像或圖片。 ⑶教師了解和掌握幼兒主要的能力發(fā)展情況。3、活動過程: ⑴通過照片展覽、對比講述,使幼兒了解自己小時候和現(xiàn)在的變化。 ①帶領(lǐng)幼兒參觀照片展覽,邊看邊問:照片上都是誰?是什么時候的照片? ②請幼兒談一談:“我們小時候是什么樣子的,現(xiàn)在又是什么樣子的?”(可以啟發(fā)幼兒從外部的變化。如:身高、體重等??梢詮淖约簩W會的本領(lǐng)。如:念兒歌、畫畫等方面) 小結(jié):你們現(xiàn)在長高了、變重了……,更重要的是你們學會了各種各樣的本領(lǐng),學會畫畫、順倒數(shù)數(shù)等,那么,你覺得哪些本領(lǐng)學得最好? ⑵鼓勵幼兒找找自己的優(yōu)點,并且愿意在集體面前展示出來。 1)教師和幼兒共同找找>教師的優(yōu)點,并且將與優(yōu)點相對應(yīng)的圖片貼在照片旁邊,引發(fā)幼兒興趣,激發(fā)他們說一說自己的優(yōu)點。
三、 活動準備: 1、國微、國旗、長城的圖片,國歌音樂。 2、活動前引導(dǎo)幼兒有意識地向成人了解為國爭光的先進人物和事例。 3、事先錄制好運動員比賽的精彩片斷與領(lǐng)獎的情景,收集有關(guān)圖片。 四、 活動過程 (一)開始部分: 師:“我們每天做操前都要升旗,升旗時奏的歌是什么歌?”(國歌)升的旗是國旗。 (二)基本部分: 1、誰來說一說國旗是什么樣的?(老師出示國旗圖片)引導(dǎo)幼兒從國旗的顏色、特征來說。(國旗是紅顏色的、 2、我們一起來聽一聽這首歌。(放國歌磁帶) “這首歌和我們平時聽的歌一樣嗎?有什么不一樣?” “除了我們升旗時奏國歌,還有什么時候奏國歌?” 3、我們來看一看他們在干嗎?(播放運動員比賽領(lǐng)獎的錄像) (1)提問:這是哪個國家的運動員?你怎么知道的? (2)領(lǐng)獎的時候,是哪個國家的運動員得到了冠軍?你怎么知道的?你聽見什么?看到什么?