【教學目標】1、了解方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、掌握一元二次不等式的圖像解法;【教學重點】1、 方程、不等式、函數(shù)的圖像之間的聯(lián)系;2、 一元二次不等式的解法?!窘虒W難點】 一元二次不等式的解法?!窘虒W設計】 1、從復習一次函數(shù)圖像、一元一次方程、一元一次不等式的聯(lián)系入手;2、類比觀察一元二次函數(shù)圖像,得到一元二次不等式的圖像解法;3、加強知識的鞏固與練習,培養(yǎng)學生的數(shù)學思維能力。【課時安排】 2課時(90分鐘)【教學過程】一、一元二次不等式的解法² 復習回顧1、根據(jù)初中所學知識,填寫下面表格: △>0 △=0△<0y=ax²+bx+c (a>0)的圖像ax²+bx+c=0 (a>0)的根有 2 個根有 1 個根有 0 個根2、觀察二次函數(shù)y=x²-5x+6的圖像,回答下列問題:(1)當y=0時,x取什么值?(2)二次函數(shù)y=x²-5x+6的圖像與x軸交點的坐標是什么?(3)當y<0時,x的取值范圍是什么?總結:由此看到,通過對函數(shù)y=x²-5x+6的圖像的研究,可以求出不等式x²-5x+6>0與x²-5x+6<0的解集
【教學目標】1、理解含絕對值不等式或的解法;2、了解或的解法;3、通過數(shù)形結合的研究問題,培養(yǎng)觀察能力;4、通過含絕對值的不等式的學習,學會運用變量替換的方法,從而提升計算技能?!窘虒W重點】(1)不等式或的解法.(2)利用變量替換解不等式或.【教學難點】 利用變量替換解不等式或.【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖 *回顧思考 復習導入 問題 任意實數(shù)的絕對值是如何定義的?其幾何意義是什么? 解決 對任意實數(shù),有 其幾何意義是:數(shù)軸上表示實數(shù)的點到原點的距離. 拓展 不等式和的解集在數(shù)軸上如何表示? 根據(jù)絕對值的意義可知,方程的解是或,不等式的解集是(如圖(1)所示);不等式的解集是(如圖(2)所示). 介紹 提問 歸納總結 引導 分析 了解 思考 回答 觀察 領會 復習 相關 知識 點為 進一 步學 習做 準備 充分 借助 圖像 進行 分析
教學目標:知識與能力目標:1.能夠借助三角函數(shù)的定義及單位圓推導出三角函數(shù)的誘導公式 2.能夠運用誘導公式,把任意角的三角函數(shù)的化簡、求值問題轉化為銳角的三角函數(shù)的化簡、求值問題情感目標:1.通過誘導公式的探求,培養(yǎng)學生的探索能力、鉆研精神和科學態(tài)度 2.通過誘導公式探求工程中的合作學習,培養(yǎng)學生團結協(xié)作的精神; 3. 通過誘導公式的運用,培養(yǎng)學生的劃歸能力,提高學生分析問題和解決問題的能力。 一導入:二、自學(閱讀教材第110---112頁,回答下列問題) 在直角坐標系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關于軸的對稱點的特征: 。對于角而言:角關于軸對稱的角為_______公式二:__________ _________ _________
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 8.3 兩條直線的位置關系(一) *創(chuàng)設情境 興趣導入 【知識回顧】 我們知道,平面內兩條直線的位置關系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時,“同位角相等”是“這兩條直線平行”的充要條件. 【問題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考*動腦思考 探索新知 【新知識】 當兩條直線、的斜率都存在且都不為0時(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過來,如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當直線、的斜率都是0時(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當兩條直線、的斜率都不存在時(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時,兩條直線相交. 由上面的討論知,當直線、的斜率都存在時,設,,則 兩個方程的系數(shù)關系兩條直線的位置關系相交平行重合 當兩條直線的斜率都存在時,就可以利用兩條直線的斜率及直線在y軸上的截距,來判斷兩直線的位置關系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說明 引領 分析 仔細 分析 講解 關鍵 詞語 思考 理解 思考 理解 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結各點,得到函數(shù)在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本?,上海→重慶. 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20
一、定義: ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).
重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.2 直線與直線、直線與平面、平面與平面平行的判定與性質 *創(chuàng)設情境 興趣導入 觀察圖9?13所示的正方體,可以發(fā)現(xiàn):棱與所在的直線,既不相交又不平行,它們不同在任何一個平面內. 圖9?13 觀察教室中的物體,你能否抽象出這種位置關系的兩條直線? 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 2*動腦思考 探索新知 在同一個平面內的直線,叫做共面直線,平行或相交的兩條直線都是共面直線.不同在任何一個平面內的兩條直線叫做異面直線.圖9-13所示的正方體中,直線與直線就是兩條異面直線. 這樣,空間兩條直線就有三種位置關系:平行、相交、異面. 將兩支鉛筆平放到桌面上(如圖9?14),抬起一支鉛筆的一端(如D端),發(fā)現(xiàn)此時兩支鉛筆所在的直線異面. 桌子 B A C D 兩支鉛筆 圖9 ?14(請畫出實物圖) 受實驗的啟發(fā),我們可以利用平面做襯托,畫出表示兩條異面直線的圖形(如圖9 ?15). (1) (2) 圖9?15 利用鉛筆和書本,演示圖9?15(2)的異面直線位置關系. 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 5
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 9.3 直線與直線、直線與平面、平面與平面所成的角 *創(chuàng)設情境 興趣導入 在圖9?30所示的長方體中,直線和直線是異面直線,度量和,發(fā)現(xiàn)它們是相等的. 如果在直線上任選一點P,過點P分別作與直線和直線平行的直線,那么它們所成的角是否與相等? 圖9?30 介紹 質疑 引導 分析 了解 思考 啟發(fā) 學生思考 0 5*動腦思考 探索新知 我們知道,兩條相交直線的夾角是這兩條直線相交所成的最小的正角. 經過空間任意一點分別作與兩條異面直線平行的直線,這兩條相交直線的夾角叫做兩條異面直線所成的角. 如圖9?31(1)所示,∥、∥,則與的夾角就是異面直線與所成的角.為了簡便,經常取一條直線與過另一條直線的平面的交點作為點(如圖9?31(2)) (1) 圖9-31(2) 講解 說明 引領 分析 仔細 分析 關鍵 語句 思考 理解 記憶 帶領 學生 分析 12*鞏固知識 典型例題 例1 如圖9?32所示的長方體中,,求下列異面直線所成的角的度數(shù): (1) 與; (2) 與 . 解 (1)因為 ∥,所以為異面直線與所成的角.即所求角為. (2)因為∥,所以為異面直線與所成的角. 在直角△中 ,, 所以 , 即所求的角為. 說明 強調 引領 講解 說明 觀察 思考 主動 求解 通過例題進一步領會 17
【教學目標】知識目標:⑴ 理解任意角的三角函數(shù)的定義及定義域;⑵ 理解三角函數(shù)在各象限的正負號;⑶掌握界限角的三角函數(shù)值.能力目標:⑴會利用定義求任意角的三角函數(shù)值;⑵會判斷任意角三角函數(shù)的正負號;⑶培養(yǎng)學生的觀察能力.【教學重點】⑴ 任意角的三角函數(shù)的概念;⑵ 三角函數(shù)在各象限的符號;⑶特殊角的三角函數(shù)值.【教學難點】任意角的三角函數(shù)值符號的確定.【教學設計】(1)在知識回顧中推廣得到新知識;(2)數(shù)形結合探求三角函數(shù)的定義域;(3)利用定義認識各象限角三角函數(shù)的正負號;(4)數(shù)形結合認識界限角的三角函數(shù)值;(5)問題引領,師生互動.在問題的思考和交流中,提升能力.
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.4 二項分布. *創(chuàng)設情境 興趣導入 我們來看一個問題:從100件產品中有3件不合格品,每次抽取一件有放回地抽取三次,抽到不合格品的次數(shù)用表示,求離散型隨機變量的概率分布. 由于是有放回的抽取,所以這種抽取是是獨立的重復試驗.隨機變量的所有取值為:0,1,2,3.顯然,對于一次抽取,抽到不合格品的概率為0.03,抽到合格品的概率為1-0.03.于是的概率(僅求到組合數(shù)形式)分別為: , , , . 所以,隨機變量的概率分布為 0123P 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 一般地,如果在一次試驗中某事件A發(fā)生的概率是P,隨機變量為n次獨立試驗中事件A發(fā)生的次數(shù),那么隨機變量的概率分布為: 01…k…nP…… 其中. 我們將這種形式的隨機變量的概率分布叫做二項分布.稱隨機變量服從參數(shù)為n和P的二項分布,記為~B(n,P). 二項分布中的各個概率值,依次是二項式的展開式中的各項.第k+1項為. 二項分布是以伯努利概型為背景的重要分布,有著廣泛的應用. 在實際問題中,如果n次試驗相互獨立,且各次實驗是重復試驗,事件A在每次實驗中發(fā)生的概率都是p(0<p<1),則事件A發(fā)生的次數(shù)是一個離散型隨機變量,服從參數(shù)為n和P的二項分布. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20
可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學過的中位數(shù),相當于是第50百分位數(shù)。在實際應用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學高一年級女生第25,50,75百分位數(shù)。
教 學 過 程教師 行為學生 行為教學 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點*鞏固知識 典型例題 例6 一艘船以每小時36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時后船行駛到B處,此時燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因為∠NBC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和(圖1-10),在平地上選擇適合測量的點C,如果,m,m,試計算隧道AB的長度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長度約為409m. 例8 三個力作用于一點O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大?。ň_到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應在的反向延長線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的余弦公式與正弦公式. *創(chuàng)設情境 興趣導入 問題 我們知道,顯然 由此可知 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 10*動腦思考 探索新知 在單位圓(如上圖)中,設向量、與x軸正半軸的夾角分別為和,則點A的坐標為(),點B的坐標為(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用誘導公式可以證明,(1)、(2)兩式對任意角都成立(證明略).由此得到兩角和與差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系;公式(1.2)反映了的余弦函數(shù)與,的三角函數(shù)值之間的關系. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 25
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 我們知道,在直角三角形(如圖)中,,,即 ,, 由于,所以,于是 . 圖1-6 所以 . 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 10*動腦思考 探索新知 在任意三角形中,是否也存在類似的數(shù)量關系呢? c 圖1-7 當三角形為鈍角三角形時,不妨設角為鈍角,如圖所示,以為原點,以射線的方向為軸正方向,建立直角坐標系,則 兩邊取與單位向量的數(shù)量積,得 由于設與角A,B,C相對應的邊長分別為a,b,c,故 即 所以 同理可得 即 當三角形為銳角三角形時,同樣可以得到這個結論.于是得到正弦定理: 在三角形中,各邊與它所對的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列問題: (1)已知三角形的兩個角和任意一邊,求其他兩邊和一角. (2)已知三角形的兩邊和其中一邊所對角,求其他兩角和一邊. 詳細分析講解 總結 歸納 詳細分析講解 思考 理解 記憶 理解 記憶 帶領 學生 總結 20
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.1兩角和與差的正弦公式與余弦公式. *創(chuàng)設情境 興趣導入 問題 兩角和的余弦公式內容是什么? 兩角和的余弦公式內容是什么? 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 5*動腦思考 探索新知 由同角三角函數(shù)關系,知 , 當時,得到 (1.5) 利用誘導公式可以得到 (1.6) 注意 在兩角和與差的正切公式中,的取值應使式子的左右兩端都有意義. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 啟發(fā)引導學生發(fā)現(xiàn)解決問題的方法 15*鞏固知識 典型例題 例7求的值, 分析 可以將75°角看作30°角與45°角的和. 解 . 例8 求下列各式的值 (1);(2). 分析 (1)題可以逆用公式(1.3);(2)題可以利用進行轉換. 解(1) ; (2) . 【小提示】 例4(2)中,將1寫成,從而使得三角式可以應用公式.要注意應用這種變形方法來解決問題. 引領 講解 說明 引領 分析 說明 啟發(fā) 引導 啟發(fā) 分析 觀察 思考 主動 求解 觀察 思考 理解 口答 注意 觀察 學生 是否 理解 知識 點 學生 自我 發(fā)現(xiàn) 歸納 25
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。