提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

高教版中職數學基礎模塊下冊:10.4《用樣本估計總體》教學設計

  • 人教版高中數學選修3組合與組合數教學設計

    人教版高中數學選修3組合與組合數教學設計

    解析:因為減法和除法運算中交換兩個數的位置對計算結果有影響,所以屬于組合的有2個.答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因為A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個元素的子集共有 個. 解析:滿足要求的子集中含有4個元素,由集合中元素的無序性,知其子集個數為C_5^4=5.答案:54.平面內有12個點,其中有4個點共線,此外再無任何3點共線,以這些點為頂點,可得多少個不同的三角形?解:(方法一)我們把從共線的4個點中取點的多少作為分類的標準:第1類,共線的4個點中有2個點作為三角形的頂點,共有C_4^2·C_8^1=48(個)不同的三角形;第2類,共線的4個點中有1個點作為三角形的頂點,共有C_4^1·C_8^2=112(個)不同的三角形;第3類,共線的4個點中沒有點作為三角形的頂點,共有C_8^3=56(個)不同的三角形.由分類加法計數原理,不同的三角形共有48+112+56=216(個).(方法二 間接法)C_12^3-C_4^3=220-4=216(個).

  • 人教A版高中數學必修一冪函數教學設計(2)

    人教A版高中數學必修一冪函數教學設計(2)

    冪函數是在繼一次函數、反比例函數、二次函數之后,又學習了單調性、最值、奇偶性的基礎上,借助實例,總結出冪函數的概念,再借助圖像研究冪函數的性質.課程目標1、理解冪函數的概念,會畫冪函數y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結合這幾個冪函數的圖象,理解冪函數圖象的變化情況和性質;3、通過觀察、總結冪函數的性質,培養(yǎng)學生概括抽象和識圖能力.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數冪函數;2.邏輯推理:常見冪函數的性質;3.數學運算:利用冪函數的概念求參數;4.數據分析:比較冪函數大?。?.數學建模:在具體問題情境中,運用數形結合思想,利用冪函數性質、圖像特點解決實際問題。重點:常見冪函數的概念、圖象和性質;難點:冪函數的單調性及比較兩個冪值的大?。?/p>

  • 人教A版高中數學必修一對數的運算教學設計(1)

    人教A版高中數學必修一對數的運算教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.3.2節(jié)《對數的運算》。其核心是弄清楚對數的定義,掌握對數的運算性質,理解它的關鍵就是通過實例使學生認識對數式與指數式的關系,分析得出對數的概念及對數式與指數式的 互化,通過實例推導對數的運算性質。由于它還與后續(xù)很多內容,比如對數函數及其性質,這也是高考必考內容之一,所以在本學科有著很重要的地位。解決重點的關鍵是抓住對數的概念、并讓學生掌握對數式與指數式的互化;通過實例推導對數的運算性質,讓學生準確地運用對數運算性質進行運算,學會運用換底公式。培養(yǎng)學生數學運算、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、理解對數的概念,能進行指數式與對數式的互化;2、了解常用對數與自然對數的意義,理解對數恒等式并能運用于有關對數計算。

  • 人教A版高中數學必修一對數的運算教學設計(2)

    人教A版高中數學必修一對數的運算教學設計(2)

    學生已經學習了指數運算性質,有了這些知識作儲備,教科書通過利用指數運算性質,推導對數的運算性質,再學習利用對數的運算性質化簡求值。課程目標1、通過具體實例引入,推導對數的運算性質;2、熟練掌握對數的運算性質,學會化簡,計算.數學學科素養(yǎng)1.數學抽象:對數的運算性質;2.邏輯推理:換底公式的推導;3.數學運算:對數運算性質的應用;4.數學建模:在熟悉的實際情景中,模仿學過的數學建模過程解決問題.重點:對數的運算性質,換底公式,對數恒等式及其應用;難點:正確使用對數的運算性質和換底公式.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入回顧指數性質:(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數有哪些性質?如 要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.

  • 人教A版高中數學必修一對數的概念教學設計(2)

    人教A版高中數學必修一對數的概念教學設計(2)

    對數與指數是相通的,本節(jié)在已經學習指數的基礎上通過實例總結歸納對數的概念,通過對數的性質和恒等式解決一些與對數有關的問題.課程目標1、理解對數的概念以及對數的基本性質;2、掌握對數式與指數式的相互轉化;數學學科素養(yǎng)1.數學抽象:對數的概念;2.邏輯推理:推導對數性質;3.數學運算:用對數的基本性質與對數恒等式求值;4.數學建模:通過與指數式的比較,引出對數定義與性質.重點:對數式與指數式的互化以及對數性質;難點:推導對數性質.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入已知中國的人口數y和年頭x滿足關系 中,若知年頭數則能算出相應的人口總數。反之,如果問“哪一年的人口數可達到18億,20億,30億......”,該如何解決?要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.

  • 人教A版高中數學必修一函數的概念教學設計(2)

    人教A版高中數學必修一函數的概念教學設計(2)

    函數在高中數學中占有很重要的比重,因而作為函數的第一節(jié)內容,主要從三個實例出發(fā),引出函數的概念.從而就函數概念的分析判斷函數,求定義域和函數值,再結合三要素判斷函數相等.課程目標1.理解函數的定義、函數的定義域、值域及對應法則。2.掌握判定函數和函數相等的方法。3.學會求函數的定義域與函數值。數學學科素養(yǎng)1.數學抽象:通過教材中四個實例總結函數定義;2.邏輯推理:相等函數的判斷;3.數學運算:求函數定義域和求函數值;4.數據分析:運用分離常數法和換元法求值域;5.數學建模:通過從實際問題中抽象概括出函數概念的活動,培養(yǎng)學生從“特殊到一般”的分析問題的能力,提高學生的抽象概括能力。重點:函數的概念,函數的三要素。難點:函數概念及符號y=f(x)的理解。

  • 人教版高中數學選修3超幾何分布教學設計

    人教版高中數學選修3超幾何分布教學設計

    探究新知問題1:已知100件產品中有8件次品,現從中采用有放回方式隨機抽取4件.設抽取的4件產品中次品數為X,求隨機變量X的分布列.(1):采用有放回抽樣,隨機變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結果相互獨立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產品中次品數X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據古典概型求X的分布列.解:從100件產品中任取4件有 C_100^4 種不同的取法,從100件產品中任取4件,次品數X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設一批產品共有N件,其中有M件次品.從N件產品中隨機抽取n件(不放回),用X表示抽取的n件產品中的次品數,則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機變量X服從超幾何分布.

  • 人教版高中數學選修3全概率公式教學設計

    人教版高中數學選修3全概率公式教學設計

    2.某小組有20名射手,其中1,2,3,4級射手分別為2,6,9,3名.又若選1,2,3,4級射手參加比賽,則在比賽中射中目標的概率分別為0.85,0.64,0.45,0.32,今隨機選一人參加比賽,則該小組比賽中射中目標的概率為________. 【解析】設B表示“該小組比賽中射中目標”,Ai(i=1,2,3,4)表示“選i級射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產品各有12件和10件,每批產品中各有1件廢品,現在先從第1批產品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號的產品,已知其中由一廠生產的占 30%, 二廠生產的占 50% , 三廠生產的占 20%, 又知這三個廠的產品次品率分別為2% , 1%, 1%,問從這批產品中任取一件是次品的概率是多少?

  • 人教版高中數學選修3二項式定理教學設計

    人教版高中數學選修3二項式定理教學設計

    二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數不一定相等.(3)二項展開式中的二項式系數的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數由n次逐項減少1次直到0次,同時字母b按升冪排列,次數由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序對各項沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中數學選修3條件概率教學設計

    人教版高中數學選修3條件概率教學設計

    (2)方法一:第一次取到一件不合格品,還剩下99件產品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率為4/99,由于這是一個條件概率,所以P(B|A)=4/99.方法二:根據條件概率的定義,先求出事件A,B同時發(fā)生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考試中,要從20道題中隨機地抽出6道題,若考生至少答對其中的4道題即可通過;若至少答對其中5道題就獲得優(yōu)秀.已知某考生能答對其中10道題,并且知道他在這次考試中已經通過,求他獲得優(yōu)秀成績的概率.解:設事件A為“該考生6道題全答對”,事件B為“該考生答對了其中5道題而另一道答錯”,事件C為“該考生答對了其中4道題而另2道題答錯”,事件D為“該考生在這次考試中通過”,事件E為“該考生在這次考試中獲得優(yōu)秀”,則A,B,C兩兩互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率為13/58.

  • 人教版高中數學選修3正態(tài)分布教學設計

    人教版高中數學選修3正態(tài)分布教學設計

    3.某縣農民月均收入服從N(500,202)的正態(tài)分布,則此縣農民月均收入在500元到520元間人數的百分比約為 . 解析:因為月收入服從正態(tài)分布N(500,202),所以μ=500,σ=20,μ-σ=480,μ+σ=520.所以月均收入在[480,520]范圍內的概率為0.683.由圖像的對稱性可知,此縣農民月均收入在500到520元間人數的百分比約為34.15%.答案:34.15%4.某種零件的尺寸ξ(單位:cm)服從正態(tài)分布N(3,12),則不屬于區(qū)間[1,5]這個尺寸范圍的零件數約占總數的 . 解析:零件尺寸屬于區(qū)間[μ-2σ,μ+2σ],即零件尺寸在[1,5]內取值的概率約為95.4%,故零件尺寸不屬于區(qū)間[1,5]內的概率為1-95.4%=4.6%.答案:4.6%5. 設在一次數學考試中,某班學生的分數X~N(110,202),且知試卷滿分150分,這個班的學生共54人,求這個班在這次數學考試中及格(即90分及90分以上)的人數和130分以上的人數.解:μ=110,σ=20,P(X≥90)=P(X-110≥-20)=P(X-μ≥-σ),∵P(X-μσ)≈2P(X-μ130)=P(X-110>20)=P(X-μ>σ),∴P(X-μσ)≈0.683+2P(X-μ>σ)=1,∴P(X-μ>σ)=0.158 5,即P(X>130)=0.158 5.∴54×0.158 5≈9(人),即130分以上的人數約為9人.

  • 人教A版高中數學必修一奇偶性教學設計(2)

    人教A版高中數學必修一奇偶性教學設計(2)

    《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數奇偶性是研究函數的一個重要策略,因此奇偶性成為函數的重要性質之一,它的研究也為今后指對函數、冪函數、三角函數的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數的奇偶性及其幾何意義;2、學會運用函數圖象理解和研究函數的性質;3、學會判斷函數的奇偶性.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數奇偶性;2.邏輯推理:證明函數奇偶性;3.數學運算:運用函數奇偶性求參數;4.數據分析:利用圖像求奇偶函數;5.數學建模:在具體問題情境中,運用數形結合思想,利用奇偶性解決實際問題。重點:函數奇偶性概念的形成和函數奇偶性的判斷;難點:函數奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。

  • 人教A版高中數學必修一誘導公式教學設計(1)

    人教A版高中數學必修一誘導公式教學設計(1)

    一、復習回顧,溫故知新1. 任意角三角函數的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)

  • 人教A版高中數學必修一集合的概念教學設計(2)

    人教A版高中數學必修一集合的概念教學設計(2)

    例7 用描述法表示拋物線y=x2+1上的點構成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數.變式2.[變條件,變設問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數.解題技巧(認識集合含義的2個步驟)一看代表元素,是數集還是點集,二看元素滿足什么條件即有什么公共特性。

  • 人教A版高中數學必修一任意角教學設計(2)

    人教A版高中數學必修一任意角教學設計(2)

    學生在初中學習了 ~ ,但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現象,本節(jié)課主要就旋轉度數和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數學學科素養(yǎng)1.數學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.

  • 人教A版高中數學必修一任意角教學設計(1)

    人教A版高中數學必修一任意角教學設計(1)

    本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人 教A版)第五章《三角函數》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數學抽象:角的概念;2.邏輯推理:象限角的表示;3.數學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數學思想方法;

  • 人教A版高中數學必修一誘導公式教學設計(2)

    人教A版高中數學必修一誘導公式教學設計(2)

    本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。

  • 人教A版高中數學必修一同角三角函數的基本關系教學設計(2)

    人教A版高中數學必修一同角三角函數的基本關系教學設計(2)

    本節(jié)內容是學生學習了任意角和弧度制,任意角的三角函數后,安排的一節(jié)繼續(xù)深入學習內容,是求三角函數值、化簡三角函數式、證明三角恒等式的基本工具,是整個三角函數知識的基礎,在教材中起承上啟下的作用。同時,它體現的數學思想與方法在整個中學數學學習中起重要作用。課程目標1.理解并掌握同角三角函數基本關系式的推導及應用.2.會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.數學學科素養(yǎng)1.數學抽象:理解同角三角函數基本關系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關系;3.數學運算:利用同角三角函數的基本關系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數基本關系式的推導及應用; 難點:會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.

  • 人教A版高中數學必修一集合的基本運算教學設計(1)

    人教A版高中數學必修一集合的基本運算教學設計(1)

    本節(jié)是新人教A版高中數學必修1第1章第1節(jié)第3部分的內容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎。本節(jié)內容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當的問題情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內容是函數、方程、不等式的基礎,在教材中起著承上啟下的作用。本節(jié)內容是高中數學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關系及運算。 1.數學抽象:集合交集、并集、補集的含義;2.數學運算:集合的運算;3.直觀想象:用 圖、數軸表示集合的關系及運算。

  • 人教A版高中數學必修二古典概型和概率的基本性質教學設計

    人教A版高中數學必修二古典概型和概率的基本性質教學設計

    新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。

上一頁12345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。