問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準(zhǔn)低處的目標(biāo),記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達(dá)的物體的高度.“底部可以到達(dá)”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進(jìn)行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.
教學(xué)目標(biāo)(一)教學(xué)知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進(jìn)行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進(jìn)行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進(jìn)一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題三、板書設(shè)計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進(jìn)一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
3學(xué)生探討結(jié)束后讓學(xué)生代表發(fā)言,總結(jié)歸納三角形三邊的不等關(guān)系。學(xué)生代表可結(jié)合教具演示。教師問:我們是否要把三條線段中的每兩條線段都相加后才能作出判斷?有沒有快捷的方法?(用較小的兩條線段的和與第三條線段的大小關(guān)系來檢驗)。4得到結(jié)論:三角形任意兩邊之和大于第三邊(電腦顯示)。教師問:三角形的兩邊之和大于第三邊,那么,三角形的兩邊之差與第三邊有何關(guān)系呢?感興趣的同學(xué)還可以下課繼續(xù)研究。5鞏固練習(xí):為了營造更美的城市,許多城市加強了綠化建設(shè)。這些綠化地帶是不允許踩的。(電腦動畫演示有人斜穿草地的實踐問題)。他運用了我們學(xué)習(xí)過的什么知識?6(1)有人說自己步子大,一步能走兩米多,你相信嗎?為什么?(由學(xué)生小組討論后回答。然后電腦演示籃球明星姚明的身高及腿長,以此來判斷步幅應(yīng)有多大?)
活動目的:通過兩個圖案設(shè)計,一個是讓學(xué)生獨立思考,借助于已經(jīng)學(xué)習(xí)的用尺規(guī)作線段和角來完成,對本節(jié)課的知識進(jìn)一步鞏固應(yīng)用;另一個是讓學(xué)生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進(jìn)一步培養(yǎng)學(xué)生幾何語言表達(dá)能力,并積累尺規(guī)作圖的活動經(jīng)驗?;顒幼⒁馐马棧焊鶕?jù)課堂時間安排,可靈活進(jìn)行處理,既可以作為本節(jié)課的實際應(yīng)用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學(xué)生都學(xué)到有價值的數(shù)學(xué)。四、 教學(xué)設(shè)計反思1.利用現(xiàn)實情景引入新課,既能體現(xiàn)數(shù)學(xué)知識與客觀世界的良好結(jié)合,又能喚起學(xué)生的求知欲望和探求意識。而在了解基礎(chǔ)知識以后,將其進(jìn)行一定的升華,也能使學(xué)生明白學(xué)以致用的道理、體會知識的漸進(jìn)發(fā)展過程,增強思維能力的培養(yǎng)。同時,在整個探究過程中,怎樣團(tuán)結(jié)協(xié)作、如何共同尋找解題的突破口,也是學(xué)生逐步提高的一個途徑。
1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停弧⑶榫硨?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.
【教學(xué)目標(biāo)】1.經(jīng)歷從不同方向觀察物體的活動過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達(dá)自己的思維過程.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的圖形.3.能識別簡單物體的三視圖,會畫立方體及其簡單組合體的三視圖.【基礎(chǔ)知識精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個點表示圓錐的頂點,因為從上往下看圓錐時先看到圓錐的頂點,再看到底面的圓.3.如何畫三視圖 當(dāng)用若干個小正方體搭成新的幾何體,如何畫這個新的幾何體的三視圖?
4.已知一個三角形的兩邊長分別是4cm、7cm,則這個三角形的周長的取值范圍是什么?目的:主要是讓學(xué)生掌握三角形三邊的和差關(guān)系具體的應(yīng)用,并能應(yīng)用生活中實際問題。同學(xué)之間可以合作交流互相探討,發(fā)展學(xué)生空間觀念、推理能力,使學(xué)生善于觀察生活、樂于探索研究,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,從中適當(dāng)?shù)膶W(xué)生進(jìn)行德育教育,教育學(xué)生穿越馬路時間越長就越危險。(五)課堂小結(jié)學(xué)生自我談收獲體會,說說學(xué)完本節(jié)課的困惑。教師做最終總結(jié)并指出注意事項。目的:讓學(xué)生暢所欲言,談收獲體會,教師給予鼓勵。主要是讓學(xué)生熟記新知能應(yīng)用新知解決問題,培養(yǎng)學(xué)生概括總結(jié)的能力、有條理的表達(dá)能力。注意事項為:判斷a,b,c三條線段能否組成一個三角形,應(yīng)注意:a+b>c,a+c>b,b+c>a三個條件缺一不可。當(dāng)a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊。
教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會數(shù)形結(jié)合思想.教學(xué)重點:特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點:靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:
如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結(jié)果精確到個位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高或垂線構(gòu)造直角三角形.