提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中數學八年級上冊定義與命題2教案

  • 北師大初中數學九年級上冊反比例函數的應用1教案

    北師大初中數學九年級上冊反比例函數的應用1教案

    因為反比例函數的圖象經過點A(1.5,400),所以有k=600.所以反比例函數的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數的知識解決實際問題時,要善于發(fā)現實際問題中變量之間的關系,從而進一步建立反比例函數模型.三、板書設計反比例函數的應用實際問題與反比例函數反比例函數與其他學科知識的綜合經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題的過程,提高運用代數方法解決問題的能力,體會數學與現實生活的緊密聯系,增強應用意識.通過反比例函數在其他學科中的運用,體驗學科整合思想.

  • 北師大初中數學九年級上冊反比例函數的圖象1教案

    北師大初中數學九年級上冊反比例函數的圖象1教案

    解:(1)∵點(1,5)在反比例函數y=kx的圖象上,∴5=k1,即k=5,∴反比例函數的解析式為y=5x.又∵點(1,5)在一次函數y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數的解析式為y=3x+2;(2)由題意,聯立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于   第一、三象限內當k<0時,兩支曲線分別位于   第二、四象限內畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數的三種表示方法及相互轉換,對函數進行認識上的整合,逐步明確研究函數的一般要求.反比例函數的圖象具體展現了反比例函數的整體直觀形象,為學生探索反比例函數的性質提供了思維活動的空間.

  • 北師大初中數學九年級上冊用頻率估計概率1教案

    北師大初中數學九年級上冊用頻率估計概率1教案

    (2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數增多時,摸到白球的頻率mn將會接近一個數值,則可把這個數值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數較大時實驗頻率穩(wěn)定于理論頻率,并據此估計某一事件發(fā)生的概率.經歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數據的技能,提高數學交流水平,發(fā)展探索、合作的精神.

  • 北師大初中數學九年級上冊正方形的性質1教案

    北師大初中數學九年級上冊正方形的性質1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質與直角三角形的性質.【類型三】 利用正方形的性質證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經常連接對角線,這樣可以使分散的條件集中.

  • 北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現實生活相聯系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

  • 北師大初中數學九年級上冊線段的比和成比例線段1教案

    北師大初中數學九年級上冊線段的比和成比例線段1教案

    故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數的第四比例項,也可能不是前三個數的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數成比例,則應滿足其中兩個數的比等于另外兩個數的比,也可轉化為其中兩個數的乘積恰好等于另外兩個數的乘積.

  • 北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    ∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經歷從用配方法解數字系數的一元二次方程到解字母系數的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數式通性,感受數學的嚴謹性和數學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.

  • 北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    北師大初中數學九年級上冊用公式法求解一元二次方程1教案

    易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.

  • 北師大初中數學九年級上冊復雜圖形的三視圖1教案

    北師大初中數學九年級上冊復雜圖形的三視圖1教案

    解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結:由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據主視圖想象物體的正面形狀及上下、左右位置,根據俯視圖想象物體的上面形狀及左右、前后位置,再結合左視圖驗證該物體的左側面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

  • 北師大初中數學九年級上冊用頻率估計概率1教案

    北師大初中數學九年級上冊用頻率估計概率1教案

    (1)請估計:當n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數增多時,摸到白球的頻率mn將會接近一個數值,則可把這個數值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數較大時實驗頻率穩(wěn)定于理論頻率,并據此估計某一事件發(fā)生的概率.經歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數據的技能,提高數學交流水平,發(fā)展探索、合作的精神.

  • 北師大初中數學九年級上冊簡單圖形的三視圖1教案

    北師大初中數學九年級上冊簡單圖形的三視圖1教案

    故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數.三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關系.通過具體活動,積累學生的觀察、想象物體投影的經驗,發(fā)展學生的動手實踐能力、數學思考能力和空間觀念.

  • 北師大初中數學九年級上冊平行線分線段成比例1教案

    北師大初中數學九年級上冊平行線分線段成比例1教案

    證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結:證明四條線段成比例時,如果圖形中有平行線,則可以直接應用平行線分線段成比例的基本事實以及推論得到相關比例式.如果圖中沒有平行線,則需構造輔助線創(chuàng)造平行條件,再應用平行線分線段成比例的基本事實及其推論得到相關比例式.三、板書設計平行線分線段成比例基本事實:兩條直線被一組平行線所截,   所得的對應線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應線段成比例通過教學,培養(yǎng)學生的觀察、分析、概括能力,了解特殊與一般的辯證關系.再次鍛煉類比的數學思想,能把一個復雜的圖形分成幾個基本圖形,通過應用鍛煉識圖能力和推理論證能力.在探索過程中,積累數學活動的經驗,體驗探索結論的方法和過程,發(fā)展學生的合情推理能力和有條理的說理表達能力.

  • 北師大初中數學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數學九年級上冊一元二次方程的解及其估算1教案

    方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數,a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數學活動的經驗,提高探究、發(fā)現和創(chuàng)新的能力.

  • 北師大初中數學九年級上冊一元二次方程1教案

    北師大初中數學九年級上冊一元二次方程1教案

    解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當地設出未知數,準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數,a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數,a≠0),其中ax2,bx,c   分別稱為二次項、一次項和   常數項,a,b分別稱為二次   項系數和一次項系數本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現實世界的一個有效數學模型,初步培養(yǎng)學生的數學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數學的興趣.

  • 北師大初中數學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數學九年級上冊一元二次方程的解及其估算1教案

    首先列表,利用未知數的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數,a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數學活動的經驗,提高探究、發(fā)現和創(chuàng)新的能力.

  • 北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    北師大初中數學九年級上冊用樹狀圖或表格求概率1教案

    由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現實生活相聯系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

  • 北師大初中數學九年級上冊相似三角形的周長和面積之比1教案

    北師大初中數學九年級上冊相似三角形的周長和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.

  • 北師大初中七年級數學下冊利用“邊邊邊”判定三角形全等教案

    北師大初中七年級數學下冊利用“邊邊邊”判定三角形全等教案

    解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉化為三角形后木架的形狀就不變了.根據具體多邊形轉化為三角形的經驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結:將多邊形轉化為三角形時,所需要的木條根數,可從具體到一般去發(fā)現規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數學生在輔助線的構造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練

  • 北師大初中七年級數學下冊利用“邊角邊”判定三角形全等教案

    北師大初中七年級數學下冊利用“邊角邊”判定三角形全等教案

    AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練

  • 北師大初中七年級數學下冊利用“角邊角”“角角邊”判定三角形全等教案

    北師大初中七年級數學下冊利用“角邊角”“角角邊”判定三角形全等教案

    1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點)2.能運用“角邊角”“角角邊”判定方法解決有關問題.(難點) 一、情境導入如圖所示,某同學把一塊三角形的玻璃不小心打碎成了三塊,現在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學生活動:學生先自主探究出答案,然后再與同學進行交流.教師點撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據平行線的性質可得∠A=∠C,∠DFE=∠BEC,再根據等式的性質可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.

上一頁123...789101112131415161718下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。