一、教材分析《走一步,再走一步》記敘了“我”童年的一次冒險和在父親的幫助下一步一步戰(zhàn)勝困難脫險的經(jīng)歷,告訴我們:困難和危險并不可怕,只要我們堅定信心、不怕它,將它分解為一個一個的小困難,從眼前腳下做起,就能個個擊破、戰(zhàn)勝它的道理。文章通過一個故事生發(fā)出人生感悟,引出一個富有哲理的道理,給人以啟發(fā)和教益。二、學(xué)生分析對一個剛剛跨入初中大門的同學(xué)來說,初中生活的開始,意味著另一段人生旅程的開始,他們是帶著父母親友的期望,在他們殷切的目光中走進(jìn)初中校園的,因而在他們的心中,充滿了對未來的設(shè)計與規(guī)劃。他們有理想,有目標(biāo),有干勁,但由于缺乏必要的經(jīng)驗(yàn),心理承受能力相對較差,因而一遇到困難,或手腳失措,不知該咋辦;或怨天尤人,哀嘆命運(yùn)不公;或干脆打退堂鼓,畏懼退縮??傊麄兇蠖疾桓颐鎸щy,正視困難,積極思考,從而找到解決困難的辦法。故對學(xué)生進(jìn)行正視困難并積極克服困難的思想教育是非常有必要的。
同時,大大地調(diào)動起學(xué)生學(xué)生學(xué)習(xí)的熱情。讓學(xué)生對學(xué)具材料進(jìn)行分類,可以選擇不同標(biāo)準(zhǔn)(例如,可以按照學(xué)具的形狀、顏色、是否立體圖形等),讓學(xué)生在小組合作的過程中獨(dú)自按照一定的標(biāo)準(zhǔn)分類,而不是由教師提出分類依據(jù),教師在學(xué)生回答的基礎(chǔ)上幫助學(xué)生總結(jié)分類的依據(jù),以此來評價孩子分類的能力。板塊四:鞏固應(yīng)用,拓展延伸數(shù)學(xué)來源于生活,生活中又充滿數(shù)學(xué)。在本課最后一環(huán)節(jié),讓學(xué)生說說在生活中可以運(yùn)用本課所學(xué)知識做些什么,拓展了學(xué)生的思維。讓學(xué)生整理自己的書包,進(jìn)一步鞏固體驗(yàn)分類的方法,讓數(shù)學(xué)走進(jìn)生活,讓學(xué)生在生活中看到數(shù)學(xué),接觸數(shù)學(xué),培養(yǎng)了學(xué)生的探索精神和創(chuàng)新意識。整節(jié)課的設(shè)計貼近生活,目的是激發(fā)學(xué)生的興趣。并且體現(xiàn)《課標(biāo)》中數(shù)學(xué)知識生活化的要求。讓學(xué)生感受到生活中處處有數(shù)學(xué)知識。結(jié)合具體情境使學(xué)生掌握的知識層層深入,最后達(dá)到靈活運(yùn)用的程度。
(二)探索新知,探究分類方法1、在剛才的討論交流中體驗(yàn)到生活中需要分類,教師適時出示課件。(一個房間里到處凌亂不堪的物品,有衣服、文具、杯子、玩具等)教師簡單介紹課件內(nèi)容,讓學(xué)生認(rèn)識到房間的物品需要進(jìn)行分類整理,從而激發(fā)他們主動學(xué)習(xí)的興趣。讓學(xué)生在小組內(nèi)交流后,派代表上展示臺操作課件,進(jìn)行分類整理。隨著學(xué)生的操作,房間里各類凌亂的物品都回到了各自的位置。緊接著教師提出疑問:“你對這樣的整理結(jié)果滿意嗎?”馬上有眼尖的學(xué)生發(fā)現(xiàn)衣物混在一起,還可以進(jìn)行細(xì)分,上衣與褲子應(yīng)該分開擺放。2、實(shí)驗(yàn)操作。(細(xì)分)(1)教師出示準(zhǔn)備好的五組物品:鉛筆、玩具、茶杯、衣服、鞋子的圖片,讓學(xué)生進(jìn)行實(shí)物的第一次分類。小組討論熱烈進(jìn)行著,學(xué)生與同伴們交流著,操作著,對同一類物品進(jìn)行第一次試分類。
(五)課前準(zhǔn)備: 1、鋪墊:讓學(xué)生和家長一起收集歷代有關(guān)合理安排的故事。 2、教具準(zhǔn)備:圓形卡片、工序卡片、記錄表格和多媒體課件等。 學(xué)具準(zhǔn)備:讓學(xué)生以小組為單位制作好圖形卡片和工序卡片。 二、說教法和學(xué)法 在教學(xué)方法上,為了使學(xué)生能輕松、愉快地理解優(yōu)化思想,根據(jù)學(xué)生的認(rèn)知特點(diǎn)和規(guī)律,在本課的設(shè)計中,我使用了演示法和實(shí)驗(yàn)法,通過課件的情境演示和實(shí)物的操作為學(xué)生創(chuàng)設(shè)情境,讓學(xué)生獨(dú)立思考,然后動手操作,互相交流,最后找出最優(yōu)方案的方式組織教學(xué)。 在學(xué)法方面,我設(shè)計了一系列貼近學(xué)生生活實(shí)際和年齡特點(diǎn)的教學(xué)活動,在這些活動中,著重以引導(dǎo)學(xué)生運(yùn)用自主探究、合作探究兩種學(xué)習(xí)方式交替學(xué)習(xí),讓他們真正以課堂的身份參與全程。并培養(yǎng)他們收集數(shù)據(jù)和分析處理數(shù)據(jù)的能力。
在組織教學(xué)和設(shè)計習(xí)題時,我考慮到了以下幾點(diǎn)。1.培養(yǎng)“主角”意識,人人參與,人人提高。新理念下倡導(dǎo)自主學(xué)習(xí),學(xué)生是學(xué)習(xí)的主人。本節(jié)課始終是學(xué)生在自主地解決問題、發(fā)現(xiàn)問題、解決問題。在教師的合作下,學(xué)生利用已有的知識經(jīng)驗(yàn),積極思維,提高了他們的分析綜合能力,幫助他們掌握了解決數(shù)學(xué)問題的規(guī)律。同時,我力求讓每個學(xué)生都體會到學(xué)習(xí)數(shù)學(xué)的快樂,在練習(xí)中,通過用手指表示得數(shù),將式子列在自己的紙板上,小組交流,搶答等形式,讓每個學(xué)生都動起來,都得到需要的數(shù)學(xué)知識。2.知識前后聯(lián)系,融會貫通。在習(xí)題練習(xí)中,我注意多元化、開放化,需要學(xué)生將知識進(jìn)行綜合內(nèi)化,來解決問題,這也是一種數(shù)學(xué)素養(yǎng)。比如決定上幾號車廂,必須進(jìn)行計算──統(tǒng)計──比較的思維活動;野生動物園情境列式中需選擇條件,留有充分的思考空間;“海洋公園”情境中學(xué)生又初步有了兩步計算的意念。3.充分利用小組合作學(xué)習(xí)的優(yōu)勢。
5.游戲活動:每人從信封袋中挑選一個自己最喜歡的分?jǐn)?shù)卡片。(1)最簡分?jǐn)?shù)上講臺,和最簡分?jǐn)?shù)相同的分?jǐn)?shù)起立。聯(lián)系生活實(shí)際發(fā)散性思考。(2)從剩下的同學(xué)中找到自己的好朋友。幫最后兩名同學(xué)找最簡分?jǐn)?shù)作朋友。判斷并說明理由。按要求參加活動,綜合考核學(xué)生判斷最簡分?jǐn)?shù)和對分?jǐn)?shù)進(jìn)行約分的能力。創(chuàng)設(shè)生活情景,提供了一些現(xiàn)實(shí)的學(xué)習(xí)材料,把書本知識與學(xué)生的日常生活聯(lián)系起來,使學(xué)生感受到數(shù)學(xué)來自生活,并不抽象;學(xué)好數(shù)學(xué),為生活、生產(chǎn)服務(wù),學(xué)數(shù)學(xué)真有價值。部分題目設(shè)計充滿趣味性,把孩子拉入游戲之中,鞏固本課的所有知識點(diǎn)。在引導(dǎo)學(xué)生積極觀察、思考、聯(lián)想、誘發(fā)學(xué)生的創(chuàng)新因素時,更應(yīng)注意引導(dǎo)學(xué)生克服固定的思維模式,鼓勵創(chuàng)造性地發(fā)現(xiàn)知識的規(guī)律和發(fā)表自己的獨(dú)特見解。
密鋪的歷史背景1619年——數(shù)學(xué)家奇柏(J.Kepler)第一個利用正多邊形鋪嵌平面。1891年——蘇聯(lián)物理學(xué)家弗德洛夫(E.S.Fedorov)發(fā)現(xiàn)了十七種不同的鋪砌平面的對稱圖案。 1924年——數(shù)學(xué)家波利亞(Polya)和尼格利(Nigeli)重新發(fā)現(xiàn)這個事實(shí)。最富趣味的是荷蘭藝術(shù)家埃舍爾(M.C. Escher)與密鋪。M.C. Escher于1898年生于荷蘭。他到西班牙旅行參觀時,對一種名為阿罕伯拉宮(Alhambra)的建筑有很深刻的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪上了種類繁多、美輪美奐的馬賽克圖案。Escher 用數(shù)日復(fù)制了這些圖案,并得到啟發(fā),創(chuàng)造了各種并不局限于幾何圖形的密鋪圖案,這些圖案包括魚、青蛙、狗、人、蜥蜴,甚至是他憑空想像的物體。他創(chuàng)造的藝術(shù)作品,結(jié)合了數(shù)學(xué)與藝術(shù),給人留下深刻印象,更讓人對數(shù)學(xué)產(chǎn)生另一種看法。
最富趣味的是荷蘭藝術(shù)家埃舍爾,他到西班牙旅行參觀時,對一種名為阿罕拉的建筑物有很深的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪了種類繁多、美侖美奐的馬賽克圖案。Escher用數(shù)日的時間復(fù)制了這些圖案,并得到了啟發(fā),創(chuàng)造了各種并不局限于幾何圖案的密鋪圖案,這些圖案包括人、青蛙、魚、鳥、蜥蜴,甚至是他憑空想象的物體。他創(chuàng)作的藝術(shù)作品,結(jié)合數(shù)學(xué)與藝術(shù),給人留下深刻的印象,更讓人對數(shù)學(xué)產(chǎn)生了另一種看法。欣賞埃舍爾的藝術(shù)世界:2、動手創(chuàng)作。(小小設(shè)計師)看了大藝術(shù)家的作品,你現(xiàn)在是不是也有了創(chuàng)作的沖動?下面,請你選一種或幾種完全一樣的圖形進(jìn)行密鋪,可以自己設(shè)計顏色,比一比,誰的設(shè)計更美觀、更新穎。(交流,展示)四、總結(jié):談收獲體會我們今天只是研究了一些規(guī)則圖形的簡單的密鋪。生活中還有各種各樣的密鋪現(xiàn)象。同學(xué)們可以到生活中去觀察,也可以上網(wǎng)瀏覽。
一、說教材本文寫于“百日維新”失敗的1900年。文章從日本人和西歐人稱我國為“老大帝國”說起,以人喻國,怒斥當(dāng)權(quán)的清王朝封建貴族官僚都是保守守舊、愚頑茍且的“老朽”,號召“中國少年”應(yīng)肩負(fù)起救國的責(zé)任,為創(chuàng)造一個繁榮富強(qiáng)的“少年中國”而努力奮斗。表達(dá)了要求祖國繁榮富強(qiáng)的愿望和積極進(jìn)取的精神。二、說學(xué)情三、說教學(xué)目標(biāo)
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題三、板書設(shè)計二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
一、本章知識要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識的關(guān)鍵,而且也是本章知識的難點(diǎn)。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進(jìn)一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點(diǎn)A作AE⊥BC,過點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
方法總結(jié):垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第2題【類型三】 動點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點(diǎn),求OP的長度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時,OP最長,此時OP為半徑的長;當(dāng)OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機(jī),客車行駛了0.5小時的時候,接收信號最強(qiáng).此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點(diǎn):計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.