解:∵CE⊥AF,∴∠DEF=90°,∴∠EDF=90°-∠F=90°-40°=50°.由三角形的內(nèi)角和定理得∠C+∠DBC+∠CDB=∠F+∠DEF+∠EDF,又∵∠CDB=∠EDF,∴30°+∠DBC=40°+90°,∴∠DBC=100°.方法總結(jié):本題主要利用了“直角三角形兩銳角互余”的性質(zhì)和三角形的內(nèi)角和定理,熟記性質(zhì)并準確識圖是解題的關(guān)鍵.三、板書設(shè)計1.三角形的內(nèi)角和定理:三角形的內(nèi)角和等于180°.2.三角形內(nèi)角和定理的證明3.直角三角形的性質(zhì):直角三角形兩銳角互余.本節(jié)課通過一段對話設(shè)置疑問,巧設(shè)懸念,激發(fā)起學(xué)生獲取知識的求知欲,充分調(diào)動學(xué)生學(xué)習(xí)的積極性,使學(xué)生由被動接受知識轉(zhuǎn)為主動學(xué)習(xí),從而提高學(xué)習(xí)效率.然后讓學(xué)生自主探究,在教學(xué)過程中充分發(fā)揮學(xué)生的主動性,讓學(xué)生提出猜想.在教學(xué)中,教師通過必要的提示指明學(xué)生思考問題的方向,在學(xué)生提出驗證三角形內(nèi)角和的不同方法時,教師注意讓學(xué)生上臺演示自己的操作過程和說明自己的想法,這樣有助于學(xué)生接受三角形的內(nèi)角和是180°這一結(jié)論
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設(shè)計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認知特點,既增加了學(xué)習(xí)興趣,又增強了學(xué)生的動手能力
解:(1)電動車的月產(chǎn)量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應(yīng),月產(chǎn)量y是時間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢,實質(zhì)是觀察自變量增大時,因變量是隨之增大還是減小.三、板書設(shè)計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學(xué)好本章的基礎(chǔ),教學(xué)中立足于學(xué)生的認知基礎(chǔ),激發(fā)學(xué)生的認知沖突,提升學(xué)生的認知水平,使學(xué)生在原有的知識基礎(chǔ)上迅速遷移到新知上來
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.
解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?
【類型三】 已知三邊作三角形已知三條線段a、b、c,用尺規(guī)作出△ABC,使BC=a,AC=b、AB=c.解:作法:1.作線段BC=a;2.以點C為圓心,以b為半徑畫弧,再以B為圓心,以c為半徑畫弧,兩弧相交于點A;3.連接AC和AB,則△ABC即為所求作的三角形,如圖所示.方法總結(jié):已知三角形三邊的長,根據(jù)全等三角形的判定“SSS”,知三角形的形狀和大小也就確定了.作三角形相當于確定三角形三個頂點的位置.因此可先確定三角形的一條邊(即兩個頂點),再分別以這條邊的兩個端點為圓心,以已知線段長為半徑畫弧,兩弧的交點即為另一個頂點.三、板書設(shè)計1.已知兩邊及其夾角作三角形2.已知兩角及其夾邊作三角形3.已知三邊作三角形本節(jié)課學(xué)習(xí)了有關(guān)三角形的作圖,主要包括兩種基本作圖:作一條線段等于已知線段,作一個角等于已知角.作圖時,鼓勵學(xué)生一邊作圖,一邊用幾何語言敘述作法,培養(yǎng)學(xué)生的動手能力、語言表達能力
方法總結(jié):絕對值小于1的數(shù)也可以用科學(xué)記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)前面的0的個數(shù)所決定.【類型二】 將用科學(xué)記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點向左移動相應(yīng)的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結(jié):將科學(xué)記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a的小數(shù)點向左移動n位所得到的數(shù).三、板書設(shè)計用科學(xué)記數(shù)法表示絕對值小于1的數(shù):一般地,一個小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負整數(shù).從本節(jié)課的教學(xué)過程來看,結(jié)合了多種教學(xué)方法,既有教師主導(dǎo)課堂的例題講解,又有學(xué)生主導(dǎo)課堂的自主探究.課堂上學(xué)習(xí)氣氛活躍,學(xué)生的學(xué)習(xí)積極性被充分調(diào)動,在拓展學(xué)生學(xué)習(xí)空間的同時,又有效地保證了課堂學(xué)習(xí)質(zhì)量
方法總結(jié):當某一事件A發(fā)生的可能性大小與相關(guān)圖形的面積大小有關(guān)時,概率的計算方法是事件A所有可能結(jié)果所組成的圖形的面積與所有可能結(jié)果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關(guān)鍵是要找準兩點:(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關(guān)的概率的應(yīng)用如圖,把一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉(zhuǎn)動轉(zhuǎn)盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉(zhuǎn)盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設(shè)計1.與面積有關(guān)的等可能事件的概率P(A)= 2.與面積有關(guān)的概率的應(yīng)用本課時所學(xué)習(xí)的內(nèi)容多與實際相結(jié)合,因此教學(xué)過程中要引導(dǎo)學(xué)生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進行合理的整合歸納,選擇適宜的數(shù)學(xué)方法來解決問題
1.進一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點)2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點)一、情境導(dǎo)入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球為贏,那么這個游戲是否公平?二、合作探究探究點一:與摸球有關(guān)的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結(jié):概率的求法關(guān)鍵是找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識相關(guān)的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機取的一個數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時要多舉幾個例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
1.自學(xué)文本出示書中情境圖:有21架飛機要參加飛行表演,怎樣飛呢?想請同學(xué)們幫忙設(shè)計編組方案,下面小組同學(xué)合作,用學(xué)具擺一擺,設(shè)計出自己的編組方案,看哪個小組設(shè)計的方案最多?學(xué)生小組合作,邊擺學(xué)具邊說方案。2.交流研討哪組想到前面來匯報一下你們制定的飛行方案?(不必強調(diào)平均分,如有小組同學(xué)說出每組有7(3)架,可以分成3(7)組,或每7(3)架一組,可以分成3(7)組,老師在給予肯定的同時可以問其它小組擺法一樣嗎?之后板書算式:21÷7=3,21÷3=7。如果學(xué)生沒說出平均分,老師可引導(dǎo)說:有時表演的每組也可同樣多)
此圖是一個復(fù)式折線統(tǒng)計圖,考察內(nèi)容是根據(jù)統(tǒng)計圖,進行數(shù)據(jù)的有效分析。(1)因為統(tǒng)計圖中藍色的折線表示學(xué)齡兒童,根據(jù)對學(xué)齡兒童的折線數(shù)據(jù)分析發(fā)現(xiàn):1980年的學(xué)齡兒童最多,2000年的學(xué)齡兒童最少。(2)根據(jù)題目要求的分析:沒上學(xué)的學(xué)齡兒童實際上是指:學(xué)齡兒童的人數(shù)與實際入學(xué)兒童人數(shù)的差。通過仔細觀察統(tǒng)計圖,可以直觀地發(fā)現(xiàn):1980年的學(xué)齡兒童和入學(xué)人數(shù)之間的差值最大,2000年的學(xué)齡兒童和入學(xué)人數(shù)之間的差值最小。所以,1980年沒上學(xué)的學(xué)齡兒童最多,2000年的最少。(3)這一問比較開放,只要合理即可。三、練習(xí)二十七第9——14題解答指導(dǎo):9. 81cm3=81ml 700dm3=0.7m3 560ml=0.56L 2.3dm3=2300cm310. 根據(jù)圖示可知:把鐵皮做成一個長方體,長方體的長為30—5×2=20(cm),寬為25—5×2=15(cm),高也就是切去的正方形的邊長5cm。(1)求“這個盒子用了多少鐵皮?”也就是求這個鐵皮盒子(無蓋)的表面積。
教學(xué)時間:教學(xué)準備:小黑板,掛圖。教學(xué)過程:一、復(fù)習(xí)舊知,引入新課。1、請大家想一想到今天為止,我們已經(jīng)復(fù)習(xí)了本學(xué)期學(xué)過的哪些知識?(表內(nèi)除法。萬以內(nèi)數(shù)的認識和加法、減法??撕颓Э思皥D形的變換。)2、對這些知識還有沒有什么問題?還有沒有內(nèi)容是我們沒有復(fù)習(xí)到或復(fù)習(xí)了掌握不好的?如果學(xué)生有問題,則針對問題,讓同學(xué)們一起來想辦法解決這些問題。學(xué)生提出問題,思考解決方法。二、復(fù)習(xí)整理:1、分別出示教材第122頁第13、14題的掛圖。(如果沒有,就讓學(xué)生直接看書)(1)看了圖后,你明白圖中的畫是什么意思嗎?學(xué)生看掛圖,小組討論這兩題的意思。敘述兩幅圖的意思,沒有說好的請其他同學(xué)來補充完整。在小組內(nèi)討論交流。(2)怎樣來解決這兩個生活中的實際問題?
1.軍事工業(yè) 時間:19世紀60—70年代 旗號: 自強 特點:1、采取雇傭勞動制,使用機器生產(chǎn)帶有資本主義的因素 2、企業(yè)官辦,管理方式--封建衙門式 產(chǎn)品--軍隊使用不作為商品投放市場 性質(zhì):帶有資本主義因素 的封建性質(zhì)的企業(yè)
第二課《怎樣保護我們的眼睛》 一、課題的確定背景 每當我們走進校園,總會看到一個個“小眼鏡”在校園里走來走去;每當我們走進教室,也會看到許許多多的“小眼鏡”坐在教室里學(xué)習(xí)。透過這“小眼鏡”,我們驚訝,我們震撼,我們傷感!青少年是祖國的未來,他們需要通過眼睛觀察和感知美麗的大千世界,為了讓學(xué)生清楚造成眼睛近視的原因,了解眼睛近視給自己的學(xué)習(xí)生活帶來的危害,力求通過此課題的研究,使之認識到從小保護眼睛的重要性,提高學(xué)生的護眼意識,更好地為學(xué)生的健康成長服務(wù)。
今天我說課的內(nèi)容是:小學(xué)二年級數(shù)學(xué)上冊第五單元“2—5的乘法口訣”的第5課時《回家路上》。本節(jié)課是在已有知識與經(jīng)驗的基礎(chǔ)上,讓學(xué)生進一步體驗乘法,掌握“用2-5的乘法口訣解決問題”,意在培養(yǎng)學(xué)生建立、運用數(shù)學(xué)模型來解決相關(guān)問題能力,從而讓他們感受到數(shù)學(xué)知識與生活實際的聯(lián)系。基于以上教學(xué)內(nèi)容,我作了如下的教學(xué)設(shè)計:本節(jié)課是在完成了“2---5的乘法口訣”的基礎(chǔ)上,使學(xué)生學(xué)會“用2-5的乘法口訣”解決問題。以回家路上作為主要線索,并通過以下活動實現(xiàn)教學(xué)目標。1、創(chuàng)設(shè)“回家路上”的問題情境,引導(dǎo)學(xué)生提出本節(jié)課的一些數(shù)學(xué)問題。2、通過自主探究,引導(dǎo)學(xué)生建立“用乘法口訣解決問題”的數(shù)學(xué)模型。3、運用所建模型,解決相關(guān)問題,并通過練習(xí),讓學(xué)生感受數(shù)學(xué)簡捷思維的優(yōu)勢和廣泛應(yīng)用的價值。
2、利用已有知識,引導(dǎo)學(xué)生自主探索求積、商近似值的方法。在學(xué)生想出6.7美元折成人民幣時要用乘法計算時,引導(dǎo)學(xué)生獨立計算得出結(jié)果后發(fā)現(xiàn)問題并嘗試獨立解決。使學(xué)生認識到積的近似值可以用四舍五入的方法求近似值。接著出示第二個情境“媽媽用600元人民幣到銀行可兌換多少美元?”由學(xué)生獨立完成,在學(xué)生交流的基礎(chǔ)上進一步總結(jié)求積、商的近似值的方法:積取近似值是先精確計算,在根據(jù)題目的要求取近似值;商取近似值是直接根據(jù)要求多除一位,然后取近似值。3、鞏固練習(xí)在學(xué)生初步掌握求積、商的近似值的方法后,我安排了教材67頁的試一試,讓學(xué)生體會如何按要求取近似值;教材68頁的練一練,涉及到了多個國家的貨幣與人民幣的兌換使學(xué)生進一步感受到數(shù)學(xué)與日常生活的密切聯(lián)系
知識與技能:學(xué)生通過對雞兔同籠現(xiàn)象的觀察與思考,從中發(fā)現(xiàn)一些特殊的規(guī)律,掌握解決問題的一般策略——列表;過程與方法:通過列表枚舉的方法,積累解決問題的經(jīng)驗,經(jīng)歷列表、嘗試和不斷調(diào)整的過程;情感態(tài)度與價值觀:在現(xiàn)實情境中,使學(xué)生感受到數(shù)學(xué)思想的運用與解決實際問題的聯(lián)系,體會到數(shù)學(xué)的價值;重點:探索列表枚舉的不同方法,找到解決問題的有效策略;難點:在自主探索過程中,掌握利用數(shù)據(jù)比較、判斷、調(diào)整的方法;關(guān)鍵:發(fā)現(xiàn)規(guī)律,確定猜測的范圍。三、學(xué)生學(xué)情分析:學(xué)生在三年級時已經(jīng)初步嘗試了應(yīng)用逐一列表法解決問題,還有個別學(xué)生會套用公式解決雞兔同籠問題,但對問題本質(zhì)理解不透。學(xué)生的思維較活躍,有一定的合作學(xué)習(xí)經(jīng)驗。本節(jié)課向?qū)W生提供了富有挑戰(zhàn)性的學(xué)習(xí)素材,大大激發(fā)了學(xué)生探究的欲望。
(1)、創(chuàng)設(shè)情境,提出數(shù)學(xué)問題。出示主題圖,中秋節(jié)到了,淘氣和笑笑通過打電話的方式來表達對遠方親人的思念,從這幅圖中你能得到哪些數(shù)學(xué)信息,能提出什么數(shù)學(xué)問題。學(xué)生很容易就找到數(shù)學(xué)信息“笑笑打國內(nèi)長途,每分鐘0.3元,共花5.1元;淘氣打國際長途,每分鐘7.2元,共花54元?!备鶕?jù)這些信息你能提出哪些數(shù)學(xué)問題呢?學(xué)生可能會說“笑笑打電話的時間是多少分?淘氣打電話的時間是多少分?”還有的同學(xué)會提出“笑笑和淘氣誰打電話的時間長?”等等,你能估一估淘氣和笑笑誰打電話的時間長嗎?(2)估算誰打電話時間長?通過估算,培養(yǎng)學(xué)生的估算意識,提高估算能力,豐富學(xué)生的素養(yǎng),發(fā)展數(shù)感。在這里我分為三步:首先讓學(xué)生說說是怎樣估算的;其次指名學(xué)生說說估算的過程;最后評價和鼓勵估算方法的合理性。
2、課標要求對于本節(jié)課內(nèi)容課標要求:探索并掌握兩個三角形全等的條件;注重所學(xué)內(nèi)容與現(xiàn)實生活的聯(lián)系,注重經(jīng)歷觀察、操作、推理、想像等探索過程。初步建立空間觀念,發(fā)展幾何直覺;在探索并掌握兩個三角形全等的條件,與他人合作交流的過程中,發(fā)展合情推理,進一步學(xué)習(xí)有條理的思考與表達。二、學(xué)生分析 1、七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點,一方面要運用直觀生動的形象,激發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要不斷創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,充分發(fā)揮學(xué)生學(xué)習(xí)的主動性,體現(xiàn)學(xué)生的主體地位。