4.操作。(“做一做”第2題) 全班同學(xué)動手操作,1名同學(xué)到投影儀上操作。 (1)第1行擺5個△,在△下面擺○,△要比○多1個。第2行擺幾個○? (2)第1行擺4朵紅花,擺的黃花比紅花少1朵,第2行擺幾朵黃花? 二、運(yùn)用新知 教科書練習(xí)一第1~4題。 1.第1題:左圖是猴子多,右圖是骨頭多。(避免學(xué)生產(chǎn)生思維定勢) 2.第2題:學(xué)生觀察,看到公雞和鴨子雖然擺的一樣長,但疏密不同,進(jìn)而判斷擺的密的鴨子的只數(shù)多些,而公雞只數(shù)少些。 3.第3題:學(xué)生在觀察到第一排蛋糕同樣多的基礎(chǔ)上,只需比較兩盒中的第二排。第二排多的就多些,反之,就少些。 4.第4題:此題是在同一排中比較多少,當(dāng)?shù)?次循環(huán)出現(xiàn)珠子時,只出現(xiàn)了一個黃色珠子,所以黃珠子多而紅珠子少。 三、總結(jié) 教師:今天我們學(xué)習(xí)了“比一比”,知道在比較時,一定要一個對著一個比,就會得到正確的結(jié)果。
一、教材分析《3的倍數(shù)的特征》是人教版實(shí)驗(yàn)教材小學(xué)數(shù)學(xué)五年級下冊第19頁的內(nèi)容,它是在因數(shù)和倍數(shù)的基礎(chǔ)上進(jìn)行教學(xué)的,是求最大公因數(shù)、最小公倍數(shù)的重要基礎(chǔ),也是學(xué)習(xí)約分和通分的必要前提。因此,使學(xué)生熟練地掌握2、5、3的倍數(shù)的特征,具有十分重要的意義。教材的安排是先教學(xué)2、5的倍數(shù)的特征,再教學(xué)3的倍數(shù)的特征。因?yàn)?、5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判定,必須把其各位上的數(shù)相加,看所得的和是否是3的倍數(shù)來判定,學(xué)生理解起來有一定的困難,因此,本課的教學(xué)目標(biāo),我從知識、能力、情感三方面綜合考慮,確定教學(xué)目標(biāo)如下:1、使學(xué)生通過理解和掌握3的倍數(shù)的特征,并且能熟練地去判斷一個數(shù)是否是3的倍數(shù),以培養(yǎng)學(xué)生觀察、分析、動手操作及概括問題的能力,進(jìn)一步發(fā)展學(xué)生的數(shù)感。
不足之處是: 1 、在如何有效地組織學(xué)生開展探索規(guī)律時,我認(rèn)為猜想可以鍛煉孩子們的創(chuàng)新思維,但猜想必須具有一定的基礎(chǔ),需要因勢利導(dǎo)。在開展探索規(guī)律時,我先組織讓學(xué)生猜想秘訣是什么?由于學(xué)生缺乏猜想的依據(jù),因此,他們的思維不夠活躍,甚至有的學(xué)生在 “亂猜 ”。這說明學(xué)生缺乏猜想的方向和思維的空間,也是教師在組織教學(xué)時需要考慮的問題。 2 、總怕學(xué)生在這節(jié)課里不能很好的接受知識,所以在個別應(yīng)放手的地方卻還在牽著學(xué)生走??偨Y(jié)性的語言也顯得有些羅嗦。 3 、課堂上學(xué)生參與學(xué)習(xí)的程度差異很明顯的:一部分學(xué)生爭先恐后地應(yīng)答,表現(xiàn)得很出眾,很活躍;但更多的學(xué)生或缺乏勇氣,或不善言辭,或沒有機(jī)會,而淪為聽眾或觀眾。 4 、本節(jié)課在教學(xué)評價方式上略顯單一。對學(xué)生的評價少,激勵性的語言不夠。
1、教學(xué)內(nèi)容義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材(北師大版)二年級上冊58頁到59頁。2、教材地位和作用本教材是學(xué)生在一年級學(xué)習(xí)用“前、后、左、右、上、下”來描述物體相對位置的基礎(chǔ)上,繼續(xù)學(xué)習(xí)使用東南西北四個方向來描述事物的位置。東南西北四個方向與以前所學(xué)過的前后左右上下位置關(guān)系有一些區(qū)別,也在某些情況下可以通用。本節(jié)課并非單純進(jìn)行知識點(diǎn)的講授,而是要關(guān)注學(xué)生的學(xué)習(xí)過程,要讓學(xué)生通過親自實(shí)踐來體會和掌握知識,體驗(yàn)數(shù)學(xué)與現(xiàn)實(shí)生活的密切關(guān)系,增強(qiáng)學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識。3、教學(xué)目標(biāo)知識目標(biāo):1、在熟悉的生活環(huán)境中辯認(rèn)方向,建立東、南、西、北的方位觀念,感知方向的相對性。2、認(rèn)識在地圖上東、南、西、北的方向,并應(yīng)用四個方位詞來描述物體的位置關(guān)系。能力目標(biāo):1、在指明東、南、西、北四個方向中的一個方向的條件下,會辨認(rèn)其余的三個方向。2、培養(yǎng)學(xué)生的方向感,運(yùn)用所學(xué)的知識來解決生活問題。
(四)鞏固新知,拓展應(yīng)用。1、讓練習(xí)變得生動有趣。一節(jié)數(shù)學(xué)課,練習(xí)的設(shè)計(jì)也是不容忽視的重要環(huán)節(jié),針對低年級學(xué)生的特點(diǎn),我設(shè)計(jì)的習(xí)題具有一定的趣味性并與生活息息相關(guān)。把豎式修改變成了森林醫(yī)生,看誰能幫助森林醫(yī)生找到大樹的病因,醫(yī)好大樹的病。以此來激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的計(jì)算能力2、(愛心小行動),學(xué)生給小動物找家,引導(dǎo)學(xué)生獨(dú)立思考發(fā)現(xiàn)只要小動物身上的數(shù)字卡片和房子的算式得數(shù)相同,小動物就可以回家了。但是有一個多余信息只有一只小兔沒有家,怎么辦呢?我因勢利導(dǎo),學(xué)生紛紛幫它設(shè)計(jì)很多家。充分發(fā)揮了孩子的創(chuàng)造力、想象力,只要算式的結(jié)果是14,教師就給予肯定。這一開放有趣的練習(xí)不僅使計(jì)算方法得到靈活運(yùn)用,同時培養(yǎng)學(xué)生助人為樂的好品質(zhì)。3、接下來,我們來玩一個乘車游戲,游戲規(guī)則可要聽清楚啦:待會兒,大屏幕上開出幾號車,你手中算式卡片的得數(shù)正好等于這輛車的車號,你就趕快上臺來乘車。
教學(xué)過程一、談話激趣,引入課題師:同學(xué)們,你們喜歡小動物嗎?動物是人類的朋友,我們都要愛護(hù)它們。人們還把可愛的動物做成各種形狀的卡通畫呢,用它們作為吉祥物參加各種盛會。請把你最喜歡的動物的名字寫在卡片紙上,只寫一種動物,不會寫的也可以畫出成圖形或卡通形象。誰來說一說。同學(xué)們的盛會是六一節(jié),學(xué)校準(zhǔn)備把同學(xué)們最喜歡的動物作為吉祥物布置到校園。該把哪種動物作為吉祥物呢?怎樣才知道哪種動物是同學(xué)們最喜愛的動物呢?師:對沒有調(diào)查就沒有發(fā)言權(quán),調(diào)查一下哪種動物最受我們喜歡就行了。用什么方法才能知道喜歡某種動物的人最多呢?請小組討論下該怎樣調(diào)查呢?把詳細(xì)的過程說出來。二、小組合作,探究新知1、說一說,你們組準(zhǔn)備怎樣開展調(diào)查生1:我們讓喜歡某種小動物的同學(xué)舉手。查一查人數(shù)就行了。
(2)研究正方形:通過前面這個環(huán)節(jié),學(xué)生已經(jīng)掌握了研究長方形特征的方法,很自然地拿出一個正方形,通過看、數(shù)、量、折、小組討論、展示交流等活動歸納出正方形的特征:正方形四條邊都相等,四個角都是直角,這也是本節(jié)課的重點(diǎn)內(nèi)容,但并不是難點(diǎn),可由中下學(xué)生來完成,給他們以展示技能的機(jī)會。通過一系列的探究活動,學(xué)生的學(xué)習(xí)積極性已被調(diào)動,思維正處于活躍階段,此時我把學(xué)生帶到本節(jié)課的難點(diǎn)環(huán)節(jié)(3)想一想,長方形和正方形有什么相同點(diǎn)和不同點(diǎn)?對于學(xué)生的思考結(jié)果,老師并不急于回答,而是引導(dǎo)學(xué)生從長方形和正方形邊和角的共同點(diǎn)去進(jìn)行研究分析,讓學(xué)生充分經(jīng)歷思考學(xué)習(xí)的過程,最后才巧妙地借助多媒體,直觀地幫學(xué)生理解正方形是一個特殊的長方形,在這里多媒體化靜為動,化抽象為直觀,較好地幫學(xué)生突破了難點(diǎn)。至此,學(xué)生已經(jīng)掌握了長方形、正方形的有關(guān)知識,此時,他們急于找到一塊用武之地,以展示自我,體驗(yàn)成功,于是我把學(xué)生帶入到“應(yīng)用新知,理解提高”的環(huán)節(jié)。
教材分析:教材借助購買物品的生活情境提出問題,展開探索并學(xué)習(xí)三位數(shù)加減法的驗(yàn)算方法。本節(jié)課的學(xué)習(xí)中,要給學(xué)生足夠的時間和空間,引導(dǎo)學(xué)生充分利用遷移規(guī)律探索和學(xué)習(xí)新知識,同時培養(yǎng)學(xué)生認(rèn)真檢查仔細(xì)驗(yàn)算的良好學(xué)習(xí)習(xí)慣。學(xué)情分析:學(xué)生已經(jīng)學(xué)過了二位數(shù)加減二位數(shù)的驗(yàn)算方法,而三位數(shù)加減三位數(shù)的驗(yàn)算是二位數(shù)加減二位數(shù)的驗(yàn)算知識的拓展,它們的算理完全相同,為此難度不大,但要給學(xué)生足夠的時間和空間去探索學(xué)習(xí)。教學(xué)目標(biāo):知識目標(biāo):1.結(jié)合現(xiàn)實(shí)情境,探索掌握三位數(shù)加減法的驗(yàn)算方法。過程與方法:在探索驗(yàn)算的過程中,初步形成歸納、整理知識的能力,養(yǎng)成認(rèn)真檢查仔細(xì)驗(yàn)算的良好學(xué)習(xí)習(xí)慣。情感態(tài)度與價值觀:通過自主探索、合作門交流,感受學(xué)習(xí)數(shù)學(xué)的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的自信心和成功感。
(三)聯(lián)系實(shí)際,鞏固應(yīng)用這一環(huán)節(jié)設(shè)計(jì)了幫助藍(lán)貓“買家電”這一情境,將學(xué)到的知識同實(shí)際問題相結(jié)合,使學(xué)生感到數(shù)學(xué)源于生活并服務(wù)于生活。特別是問題(4):“如果它用900元錢買一臺錄音機(jī)和一臺洗衣機(jī)它的錢夠嗎?如果不夠,還差多少元錢?”這個問題的設(shè)計(jì)發(fā)散了學(xué)生的思維,學(xué)生可以用先加再減的方法,也可以用連減的方法,給學(xué)生的計(jì)算提供較大的空間,而且學(xué)生如果先把兩種電器的價錢相加就能湊成整百整十?dāng)?shù),很快能計(jì)算出結(jié)果,這樣不僅鞏固了本節(jié)所學(xué)知識,同時還應(yīng)用了前幾節(jié)課的口算知識。1.師:利用今天學(xué)習(xí)的知識可以解決很多生活中的問題,今天藍(lán)貓就想請大家?guī)蛡€忙,它想買幾件家用電器,我們陪它到家電城看看好嗎?(課件出示商品及標(biāo)價。)
二、說學(xué)生通過前面的學(xué)習(xí),學(xué)生已經(jīng)認(rèn)識了長度單位:米、分米、厘米、毫米,以及它們之間的進(jìn)率,多數(shù)學(xué)生能聯(lián)系生活實(shí)際,合理運(yùn)用長度單位。但“千米”這個長度單位比較抽象,學(xué)生學(xué)習(xí)起來有些困難。為了激發(fā)學(xué)生的學(xué)習(xí)興趣,可以把學(xué)生帶到學(xué)校的操場上進(jìn)行教學(xué),讓學(xué)生實(shí)地拉一拉、走一走、想一想等活動,充分感知“千米”這一長度單位到底有多長;對于學(xué)困生,以和他們玩游戲的方式來引導(dǎo)他們感知1千米的具體長度,從多角度來激發(fā)他們的參與,給予他們激勵性的評價語言,并讓他們積極匯報(bào)自己的親身體會,達(dá)到全員參與,共同提高的原則。三、說教學(xué)目標(biāo)新課程標(biāo)準(zhǔn)在空間與圖形中明確提出:在教學(xué)中,應(yīng)注重所學(xué)知識與日常生活的密切聯(lián)系:應(yīng)注重使學(xué)生在觀察、操作等活動中,獲得直觀經(jīng)驗(yàn)。結(jié)合我對教材的理解和本班學(xué)生的實(shí)際情況,我擬訂了以下教學(xué)目標(biāo):
第二步,我在教具上撥幾個分針指的數(shù)字大點(diǎn)的時刻看同學(xué)們是否認(rèn)識,并且能否說上為什么,接著我告訴大家先看時針,時針剛走過幾或正指向幾就是幾時。再看分針,分針走了幾大格我們就用幾乘以5,然后再加上剛過這個大格又走的小格數(shù)。第三步,我撥幾個時刻讓同學(xué)們告訴我是幾時幾分。第五環(huán)節(jié):認(rèn)識表示法。在剛才第四環(huán)節(jié)時我就在在黑板上寫出幾個數(shù)字表示法的時間和幾個漢字表示法的時間,通過對比讓同學(xué)們記住兩種表示法。第六環(huán)節(jié):加強(qiáng)練習(xí)。通過課件出示鐘面讓學(xué)生認(rèn)識時刻、同桌一個撥時刻一個說鐘面上表示的時刻、請一位學(xué)生說出一個時刻讓大家在自己的學(xué)具上撥出時刻這些活動讓學(xué)生將認(rèn)識時刻這一能力得到鞏固。第七環(huán)節(jié):課外拓展。1、我撥時針和分針讓同學(xué)們說出此時的時針和分針形成了什么角,將上一單元知識得到鞏固。2、如果時間允許,我撥時針和分針問學(xué)生在這個時刻再經(jīng)過10分鐘或再經(jīng)過15分鐘是幾時幾分。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點(diǎn)A作AE⊥BC,過點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
方法總結(jié):垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第2題【類型三】 動點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點(diǎn),求OP的長度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時,OP最長,此時OP為半徑的長;當(dāng)OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機(jī),客車行駛了0.5小時的時候,接收信號最強(qiáng).此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計(jì)算一個銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.