證明:如圖,過點C作CF∥PD交AB于點F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時,如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實以及推論得到相關(guān)比例式.如果圖中沒有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實及其推論得到相關(guān)比例式.三、板書設(shè)計平行線分線段成比例基本事實:兩條直線被一組平行線所截, 所得的對應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對應(yīng)線段成比例通過教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個復(fù)雜的圖形分成幾個基本圖形,通過應(yīng)用鍛煉識圖能力和推理論證能力.在探索過程中,積累數(shù)學(xué)活動的經(jīng)驗,體驗探索結(jié)論的方法和過程,發(fā)展學(xué)生的合情推理能力和有條理的說理表達能力.
(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點 O;(2)過點O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點O;(2)過點O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點O在四邊形ABCD的一條邊上或在四邊形ABCD的一個頂點上時,作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.
故線段d的長度為94cm.方法總結(jié):利用比例線段關(guān)系求線段長度的方法:根據(jù)線段的關(guān)系寫出比例式,并把它作為相等關(guān)系構(gòu)造關(guān)于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應(yīng)進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結(jié):若使四個數(shù)成比例,則應(yīng)滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉(zhuǎn)化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.
解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實際需求,注明自變量的取值范圍.三、板書設(shè)計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
當(dāng)Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當(dāng)Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當(dāng)Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對應(yīng)邊.三、板書設(shè)計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵學(xué)生獨立思考,多角度分析解決問題,總結(jié)常見的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認識到配方法是理解求根公式的基礎(chǔ).通過對求根公式的推導(dǎo),認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運算能力,并養(yǎng)成良好的運算習(xí)慣.
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當(dāng)ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時,代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應(yīng)該進多少件西裝?六、課堂小結(jié):盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現(xiàn)的頻率就會隨著實驗次數(shù)的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習(xí)補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計口袋中黑球的個數(shù),采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復(fù)上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計口袋中大約有 48 個黑球。
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
①②③分析題干中,我們生命的意義不在于長短,而在于對社會的貢獻,將個體生 命和國家的甚至人類的命運聯(lián)系在一起時,生命就會閃耀出偉大,活出自己的精彩,讓 生命更加絢爛,故①②③說法符合題意;④“追求生命個性和韌性”說法不符合主題故 ④說法錯誤;2.C【設(shè)計意圖】該題考查呵護食品安全,珍愛生命。 ④說法雖然正確的,但是主體不符,不是市民的做法。故不能入選。 3.A【設(shè)計意圖】本題考查對生命的傳承。①②④材料中的話意在告訴我們,在人類生命的接續(xù)中,我們應(yīng)該為自己的生命找 到一個位置,擔(dān)當(dāng)一份使命;在生命的傳承關(guān)系中,我們應(yīng)該正確認識和面對自己的生 命;我們每個人都不僅僅是在身體上接續(xù)祖先的生命,也在精神上不斷繼承和創(chuàng)造人類 的文明成果,故①②④說法正確;③生命屬于我們每個人,生命的接續(xù)和發(fā)展與我們每 個人息息相關(guān),故③說法錯誤。
本單元內(nèi)容是部編版《道德與法治》七年級上冊第三單元,單元標(biāo)題是“師 長情誼”,依據(jù)《義務(wù)教育道德與法治課程標(biāo)準(zhǔn) (2022 年版) 》,圍繞核心素 養(yǎng)確定的課程目標(biāo)要求如下:1、道德修養(yǎng)家庭美德,踐行以尊老愛幼、男女平等、勤勞節(jié)儉、鄰里互助為主要內(nèi)容的 道德要求,做家庭好成員。培育學(xué)生的道德修養(yǎng),有助于他們經(jīng)歷從感性體驗到理性認知的過程,傳承 中華民族傳統(tǒng)美德,形成健全的道德認知和道德情感,發(fā)展良好的道德行為。 2、健全人格理性平和,開放包容,理性表達意見,能夠換位思考,學(xué)會處理與家庭、他 人的關(guān)系。3、總目標(biāo)學(xué)生能夠了解個人生活和公共生活中基本的道德要求和行為規(guī)范,能夠在日常生 活中踐行尊老愛幼等的道德要求;形成初步的道德認知和判斷,能夠明辨是非善 惡;通過體驗、認知和踐行,形成良好的道德品質(zhì)。具有理性平和的心態(tài),能夠 建立良好的師生關(guān)系和家庭關(guān)系。
作業(yè)二(一)、作業(yè)內(nèi)容情境探究、互聯(lián)網(wǎng)將地球縮成一張小小的“網(wǎng)”。在這張“網(wǎng)”里,我們可 以發(fā)布信息、瀏覽新聞、結(jié)交好友等,為我們的人際交往擴展了新通道。情境一 中學(xué)生小強在一個論壇上認識了小胡,他們在很多問題上看法一致, 很快成為無話不談的好朋友。經(jīng)常徹夜長談興趣愛好、閑聊家庭狀況、相約打游 戲。 有一天,小胡邀請小強一起去參與網(wǎng)絡(luò)賭博,小強猶豫了。(1)請運用《網(wǎng)上交友新時空》的相關(guān)內(nèi)容,結(jié)合材料,談一談:對于這樣的網(wǎng) 友,小強應(yīng)該怎樣做?情境二 小強拒絕小胡以后,開始找借口疏遠小胡。小胡察覺后,開始“變臉” 郵寄各種恐嚇信和物品到小強家。小強忍無可忍選擇了報警。(2)小強的網(wǎng)絡(luò)交往經(jīng)歷,給我們中學(xué)生參與網(wǎng)絡(luò)交往哪些建議?
第二框“師生交往”,主要幫助學(xué)生懂得“教學(xué)相長”的道理,強調(diào)師生之間上午雙向互動,引導(dǎo)學(xué)生正確對待老師的引領(lǐng)和指導(dǎo),全面認識師生交往的實質(zhì),努力建立和諧的師生關(guān)系,達到師生交往理想而美好的狀態(tài)。第七課《親情之愛》引導(dǎo)學(xué)生認識現(xiàn)代家庭的特點,培養(yǎng)學(xué)生在親子之間積極溝通的能力和意識,學(xué)會表達愛,讓家庭更美好成為一種發(fā)自內(nèi)心的呼喚,與父母共創(chuàng)美好家庭。第一框“家的意味”,主要引導(dǎo)學(xué)生通過對我國傳統(tǒng)文化“家訓(xùn)”“家規(guī)”的探究,了解中國家庭文化中“孝”的精神內(nèi)涵,引導(dǎo)學(xué)生對家庭美德的深入思考,進而引導(dǎo)學(xué)生學(xué)會孝親敬長。第二框“愛在家人間”,主要幫助學(xué)生認識到進入青春期的初中學(xué)生與家人之間產(chǎn)生沖突,既有自我獨立意識增強與依賴心理之間的矛盾的原因,又有代際之間心智、學(xué)識、經(jīng)歷等方面的較大差異,掌握呵護親情和解決沖突的方法。
作業(yè) 2:老師在與我們的交往中,扮演著組織者、傾聽者、陪伴者的角色。作為學(xué)生,我 們要正確對待老師的表揚和批評。下列對此認識正確的是 ( )①老師的表揚意味著肯定、鼓勵和期待②老師的表揚和批評能激勵我們更好地學(xué)習(xí)和發(fā)展③老師的批評意味著關(guān)心、提醒和勸誡,可以幫助我們改進不足④對待老師的批評,我們要理解老師的良苦用心A.①②③ B.①③④ C.②③④ D.①②③④1.參考答案:D2.時間要求:2 分鐘3.評價設(shè)計:本題學(xué)生錯題的原因在于沒有正確理解老師的批評和表揚。 4.作業(yè)分析與設(shè)計意圖:本題考查如何正確看待老師的批評和表揚。(1) 老師的表揚意味著對我們的肯定、鼓勵和期待;批評意味著老師對我們的關(guān)心、 提醒和勸誡,可以幫助我們改進不足,對待老師的批評,我們要理解老師的良苦用心。 (2) 老師的表揚和批評能激勵我們更好地學(xué)習(xí)和發(fā)展,我們要正確地對待老師的表 揚和批評,被老師表揚不驕傲,受到批評也不氣餒和抱怨,正視老師的教育,從而促 進良好師生關(guān)系的發(fā)展。
2.內(nèi)容內(nèi)在邏輯本單元包括兩課。 第六課設(shè)計了“走近老師”和“師生交往”兩框內(nèi)容。第一框通過 了解不同時期的老師,讓學(xué)生從多層面、多角度認識老師這一職業(yè)群體;結(jié)合學(xué)生學(xué) 習(xí)實際,發(fā)現(xiàn)風(fēng)格不同的老師,進一步引導(dǎo)學(xué)生學(xué)會接納、尊重不同風(fēng)格的老師,繼 而建立對老師應(yīng)有的正確“印象”;構(gòu)建與老師良好交往的邏輯起點。第二框通過幫 助學(xué)生正確對待老師的引領(lǐng)與指導(dǎo)、表揚與批評以及與老師的矛盾與沖突,使學(xué)生認 識到亦師亦友的師生關(guān)系是師生交往的理想狀態(tài);并以實際行動與老師共建良好師生 關(guān)系,共度教育好時光。第七課設(shè)計了“家的意味” 、“愛在家人間”和“讓家更美好”三框內(nèi)容。第一框通過 引導(dǎo)學(xué)生聯(lián)系已有的生活經(jīng)驗認識“家”是什么,結(jié)合對“家”及有關(guān)優(yōu)秀的傳統(tǒng)文化 進行探討與分享,認識中國人的“家”是怎樣的;在對“家”基本認知的前提下,第二 框進一步引導(dǎo)學(xué)生理解家的最本質(zhì)內(nèi)涵是“愛” ,并以實際行動去呵護“愛”;在對 “家”和“愛”的認知基礎(chǔ)上,第三框進一步引導(dǎo)學(xué)生學(xué)會與家庭成員友好相處,從 而構(gòu)建和諧的家庭關(guān)系,讓家更美好。
一、單項選擇題1.“一支粉筆兩袖清風(fēng),三尺講臺四季晴雨;十卷詩賦九章勾股,八索文思七緯 地理。”這幅對聯(lián)歌頌的對象是 ( )A.科學(xué)家 B.教師 C.醫(yī)生 D.警察2.建校 12 年,云南麗江華坪女高 1000 多名女生走出大山上大學(xué)。她以怒放的生 命,向世界表達倔強,她就是崖畔桂雪中的梅。她就是 2020 年度感動中國人物 ——張桂梅。她之所以讓我們感動,是因為她 ( )①有理想信念 ②有仁愛之心③有道德情操 ④有較高學(xué)歷A.①②③ B.①②④C.①③④ D.②③④ 3.初中生麗麗覺得初中數(shù)學(xué)老師上課沒有小學(xué)數(shù)學(xué)老師幽默,導(dǎo)致他現(xiàn)在對數(shù)學(xué) 不感興趣,成績直線下降。針對麗麗的的情況,同學(xué)們紛紛給出建議,你贊同的 是 ( )A.讓老師改變教學(xué)風(fēng)格B.要求調(diào)換一位教學(xué)風(fēng)格幽默的老師C.每位老師風(fēng)格不同,我們應(yīng)尊重老師的“不同”