【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質可判斷a+1為負數(shù),即a+1<0,可得a<-1.方法總結:只有當不等式的兩邊都乘(或除以)一個負數(shù)時,不等號的方向才改變.三、板書設計1.不等式的基本性質性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質2:不等式的兩邊都乘(或除以)同一個正數(shù),不等號的方向不變;性質3:不等式的兩邊都乘(或除以)同一個負數(shù),不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據(jù):不等式的基本性質1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質2、3.本節(jié)課學習不等式的基本性質,在學習過程中,可與等式的基本性質進行類比,在運用性質進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質疑,通過練習中易出現(xiàn)的錯誤,引導學生歸納總結,提升學生的自主探究能力.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結:約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設計1.分式的基本性質:分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質,然后順勢探究分式變號法則.在每個活動中,都設計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內的整數(shù)即可.解:x+23<1 ①,2(1-x)≤5?、?,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結:此題主要考查了一元一次不等式組的解法,解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進而求得不等式組的整數(shù)解.三、板書設計一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.
一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結:多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.
一、教材分析軸對稱是現(xiàn)實生活中廣泛存在的一種現(xiàn)象,本章內容定位于生活中軸對稱現(xiàn)象的分析,全章內容按照“直觀認識——探索性質——簡單圖形——圖案設計”這一主線展開,而這節(jié)課作為全章的最后一節(jié),主要作用是將本章內容進行回顧和深化,使學生通過折疊、剪紙等一系列活動對生活中的軸對稱現(xiàn)象由“直觀感受”逐漸過渡到從“數(shù)學的角度去理解”,最后通過圖案設計再將“數(shù)學運用到生活中”。軸對稱是我們探索一些圖形的性質,認識、描述圖形形狀和位置關系的重要手段之一。在后面的學習中,還將涉及用坐標的方法對軸對稱刻畫,這將進一步深化我們對軸對稱的認識,也為“空間與圖形”后繼內容的學習打下基礎。二、學情分析學生之前已經(jīng)認識了軸對稱現(xiàn)象,通過扎紙?zhí)剿髁溯S對稱的性質,并在對簡單的軸對稱圖形的認識過程中加深了對軸對稱的理解,但是對生活中的軸對稱現(xiàn)象仍然以“直觀感受”為主。
(三)解釋、應用和發(fā)展問題4:如果測量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學生參照書本99頁,用測角儀測量塔高的方法.這個物體的底部不能到達。)(1)請你設計一個測量小山高度的方法:要求寫出測量步驟和必須的測量數(shù)據(jù)(用字母表示),并畫出測量平面圖形;(2)用你測量的數(shù)據(jù)(用字母表示),寫出計算小山高度的方法。過程: (1) 學生觀察、思考、建模、自行解決(3) 學生間討論交流后,教師展示部分學生的解答過程(重點關注:1.學生能否發(fā)現(xiàn)解決問題的途徑;學生在引導下,能否借助方程或方程組來解決問題;學生的自學能力.2.關注學生克服困難的勇氣和堅強的意志力。3.繼續(xù)關注學生中出現(xiàn)的典型錯誤。)(設計意圖: 讓學生進一步熟悉如何將實際問題轉化成數(shù)學模型,并能用解直角三角形的知識解決簡單的實際問題,發(fā)展學生的應用意識和應用能力。
探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關系列出方程即可.設原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結:此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系,列出方程.三、板書設計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.
解析:(1)連接BI,根據(jù)I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據(jù)等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.
解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。
如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
一、教材分析:本節(jié)知識,是在學生建立了小數(shù)的概念,學習了小數(shù)性質以及小數(shù)點移動引起小數(shù)大小變化的基礎上進行的,包括了復名數(shù)化成小數(shù)和復名數(shù)化成低級和高級單位單名數(shù)。教材重在向學生滲透“數(shù)學來源于生活,又服務于生活”的理念,以小數(shù)在生活中的實際應用為切入點,從學生的生活經(jīng)驗和知識背景出發(fā)創(chuàng)設情境,引導學生進行積極的體驗,從而體會到數(shù)學的內在價值。二、說教法這節(jié)課,在教法和學法上力求體現(xiàn)以下幾個方面:1、堅持以“學生為主題,老師為主導,訓練為主線”的原則,主要采用啟發(fā)誘導的教學方法,引導學生親歷知識的觀察、發(fā)現(xiàn)、應用的過程。引導學生利用遷移法,討論法,自主探究法對新知識進行主動學習。2、注重創(chuàng)設情境,從學生已有的小數(shù)知識出發(fā),緊密結合具體的生活情境和活動情境,激發(fā)學生的學習興趣。
2重點難點教學重點第一課時:了解繪畫故事的表現(xiàn)特點,感受真、善、美。第二課時:繪畫自編故事的創(chuàng)作特點及步驟。教學難點第一課時:選材、構思設計。第二課時:構圖與繪制3教學過程3.1 第一課時教學活動活動1【導入】“連連看” 教師提供數(shù)張圖片和幾句話(或幾段文字),請學生根據(jù)文字找到相應的圖畫將它們連起來,并找出先后順序將故事講完整。教師小結,出示課題《圖文并茂》。設計意圖:以游戲的形式“連一連”,激發(fā)學生的好奇心和興趣,以飽滿的熱情投入學習內容——圖文并茂。
2學情分析本課屬于“造型.表現(xiàn)”,學習領域??蓯塾哪膭勇蜗鬂B透了具象的造型知識,培養(yǎng)了學生的創(chuàng)新精神,豐富著孩子們的美好童年回憶。本課介紹了幾種不同表現(xiàn)形式的動漫形象。聯(lián)系生活原型與動漫形象,告訴學生動漫形像來源于現(xiàn)實生活,并通過文字和示范講述動漫行象的造型手法(擬人化、變形、夸張等),引導學生大膽繪制簡單的動漫形象。3 重難點1、教學重點:讓學生了解動漫的風格,主要的設計手法,激發(fā)學生豐富的想象力,繪制出幽默、夸張、富有童趣的動漫形象。2、教學難點:讓學生運用擬人、夸張、添加、變形、寫實等方法,畫出動漫形象
1.展示海洋魚類圖片,并導入課題。師:夏季炎熱的天氣已經(jīng)開始了,老師帶來了一份涼爽禮物想送大家,你們猜猜是什么呢?生:……師:想知道嗎?這份禮物就是幾張美麗的圖片,請看大屏幕:在深藍色的海底世界里,一群可愛的海洋魚在悠閑地游來游去,好涼快,好舒服呀。喜歡這個禮物嗎? 生:…… 師:喜歡呀,老師太高興了。同學們再來看一看,在這幾張漂亮的圖片里,除了讓我們感受到大海的涼爽和美麗之外,你還發(fā)現(xiàn)什么了嗎?
1、通過欣賞各式各樣的帽子的基本結構和作用。了解帽子制作的基本過程。2、通過教學是學生初步掌握裝飾的基本方法(折、剪貼、插接、鏤空等),提高他們的語言表達能力。3、教師鼓勵學生積極參與游戲和制作,努力使自己的帽子與眾不同,體驗制作過程的樂趣。3學情分析從學生掌握知識的角度看,他們已經(jīng)掌握了基本的手工制作方法,而本學期學生通過了前面的剪紙的練習,這使他們的動手能力進一步提高,因此為本課打下了良好的基礎。從學生的特征看,這個年齡段的孩子對手工有著濃厚的興趣,喜歡嘗試制作新奇的東西。但部分基礎差的同學缺乏耐性和信心。教師對于這種情況,可利用優(yōu)秀作品為參照物激發(fā)其靈感,鼓勵創(chuàng)作。
2學情分析這是一個學生比較感興趣的內容,通過學習不僅能提高學生的學習欲望,更希望能根據(jù)一句話或者一段話以畫畫的形式表現(xiàn)出來。3重點難點重點:了解繪畫故事的表現(xiàn)特點,感受真、善、美。繪畫自編故事的創(chuàng)作特點及步驟。難點:選材、構思設計、構圖與繪制。
活動1【導入】談話引入設計意圖:這一環(huán)節(jié),是一首小詩來激發(fā)學生的離別情感,勾起學生對小學六年生活的美好回憶,從而導入新課。同學們,今天老師給大家?guī)淼牟皇敲利惖膱D畫,而是一首我寫的詩,你們誰愿意來第一個來欣賞一下。出示課件1:學生配樂朗讀:每到六年級心里就有些難過你們就要離開而我剛剛收獲我不知道你們將來會怎樣生活你們總說你們永遠永遠記得我
3重點難點教學重點:認識、掌握中國畫工具材料的使用。用筆、用墨、用水的訓練。教學難點:焦、濃、重、淡、清的正確畫法,嘗試用此技法畫一個水墨小品。教學活動活動1【導入】一、師生問候,引入新課。1、檢查學生用具準備情況,提醒大家管理好自己的水和墨汁,別污染自己或他人衣服。2、提問引入:你自己最喜歡用什么畫筆作畫?引入水墨畫概念。