2重點難點教學(xué)重點了解我國古代建筑的外觀造型、建筑結(jié)構(gòu)、群體布局、裝飾色彩。教學(xué)難點對我國古代建筑的欣賞感受能力,能夠從外觀、結(jié)構(gòu)、布局、裝飾、類別來欣賞祖國古代的建筑藝術(shù)。3教學(xué)過程3.1 第一學(xué)時教學(xué)活動活動1【導(dǎo)入】觀察建筑,點出建筑(設(shè)計意圖:了解建筑的基本特點)1、同學(xué)們,我們坐在什么地方?(教室)2、讓我們來觀察一下,它都有哪些部分組成?(墻壁、天花板、地面、門窗)3、還有什么地方有這些特點?(電影院、家… …)4、 [課件1:現(xiàn)代建筑]這些都叫做“建筑”。(板書)
一 說教材運算定律和簡便計算的單元復(fù)習(xí)是人教版第八冊第三單元內(nèi)容,屬于“數(shù)與代數(shù)”領(lǐng)域。本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了運算定律(加法交換律、加法結(jié)合律、乘法交換律、乘法結(jié)合律和乘法分配律)以及基本的簡便計算方法(連減、連除)基礎(chǔ)上進(jìn)行的整理復(fù)習(xí)課。二、說教學(xué)目標(biāo)及重難點1、通過復(fù)習(xí)、梳理,學(xué)生能熟練掌握加法、乘法等運算定律,能運用運算定律進(jìn)行簡便計算。2、培養(yǎng)學(xué)生根據(jù)實際情況,選擇算法的能力,能靈活地解決現(xiàn)實生活中的簡單實際問題。教學(xué)重點:理解并熟練掌握運算定律,正確進(jìn)行簡便計算。教學(xué)難點:根據(jù)實際,靈活計算。三、說教法學(xué)法根據(jù)教學(xué)目標(biāo)及重難點,采用小組合作、自主探究、動手操作的學(xué)習(xí)方式。四、說教學(xué)過程
(4)驗算師:小數(shù)加減計算很輕易出錯,你有什么方法檢驗計算的結(jié)果?(假如有困難,教師再提示一下)(三)鞏固應(yīng)用、內(nèi)化提高 剛才的學(xué)生剛剛體會到了成功的喜悅,在此基礎(chǔ)上,我安排了三個層次的練習(xí)。1. 基本練習(xí),出幾道直接寫得數(shù)的一位小數(shù)加減法的題,讓學(xué)生掌握本課的基礎(chǔ)知識。2. 綜合練習(xí),是課后做一做1,鞏固新知識,發(fā)展學(xué)生思維的機智性與靈活性。3. 提高練習(xí),課后做一做2這是小數(shù)加減法的兩步應(yīng)用題,這樣既培養(yǎng)了學(xué)生運用知識的能力,有培養(yǎng)了學(xué)生的創(chuàng)新能力?!驹O(shè)計意圖】這樣的練習(xí)的設(shè)計有密度,有坡度,形式多樣,而且具有層次性。不僅鞏固了學(xué)生的計算能力,而且還培養(yǎng)了學(xué)生的應(yīng)用能力。在這個環(huán)節(jié)中,還讓學(xué)生開展了自我評價、生生互評等。大大提高了學(xué)生學(xué)習(xí)的積極性。(四)回顧整理,反思提升通過今天的學(xué)習(xí),你都有哪些收獲?
4、簡單小結(jié),內(nèi)化知識引導(dǎo)學(xué)生總結(jié)出學(xué)習(xí)的課題(教師板書),學(xué)生再明確表達(dá)出“同分母分?jǐn)?shù)加減混合運算的順序與證書加減混合運算的順序完全相同,計算方法與同分母分?jǐn)?shù)加減法的計算方法相同,即分母不變,分子相加減。注意能月份的一定要約成最簡分?jǐn)?shù)為止?!保ㄈ╈柟叹毩?xí)、拓展應(yīng)用1、基礎(chǔ)練習(xí)2、引申練習(xí)3、解決實際問題 【精心設(shè)計練習(xí),既有與例題程度相當(dāng)?shù)摹氨5住鳖},又有與生活密切相關(guān)的變式題,拓展思維,培養(yǎng)創(chuàng)新意識,展現(xiàn)數(shù)學(xué)的應(yīng)用價值,讓學(xué)生體會到學(xué)習(xí)數(shù)學(xué)有用,生活處處離不開數(shù)學(xué)。同時適時進(jìn)行環(huán)保教育和愛國主義教育,起到了教書育人的作用?!课濉⒄f板書設(shè)計此板書力圖板書的簡潔美,能突出教學(xué)的重難點,提示了方法過程。
(一)創(chuàng)設(shè)情境,提出問題:學(xué)生的學(xué)習(xí)動機和求知欲不會自然涌現(xiàn),它取決于教師所創(chuàng)設(shè)的學(xué)習(xí)情境,而興趣是最好的老師,因此,在課的一開始,我設(shè)計了“今天我們再去街心公園看一看”這一情境:出示情境圖:你看到了什么信息,你能提出什么數(shù)學(xué)問題?(板書)學(xué)生提出很多問題。設(shè)計意圖:數(shù)學(xué)來源于生活,有趣的生活情境,激發(fā)學(xué)生好奇心和強烈的求知欲,讓學(xué)生在生動具體的情境中學(xué)習(xí)數(shù)學(xué),從而使教材與學(xué)生之間建立相互包容、相互激發(fā)的關(guān)系。讓學(xué)生既認(rèn)識了自身,又大膽而自然地提出猜想。(二)、探索新知解決問題“教師為主導(dǎo),學(xué)生為主體,探究為主線”的三為主原則“保護(hù)環(huán)境”花壇一共用了多少盆花?怎樣列式?
當(dāng)學(xué)生說出估算思路時,老師可以及時適當(dāng)進(jìn)行賞識性的表揚。與此同時,教師對各種估算方法都不急于評價,而是積極引導(dǎo)學(xué)生采用多種算法。在劉兼教授的訪談錄中,曾經(jīng)有這么一句話:在提倡算法多樣性的同時,老師要不要提出一種最好的解法呢?所謂最好的方法,要和學(xué)生的個性結(jié)合起來,沒有適合全體學(xué)生的方法。每個學(xué)生的學(xué)習(xí)方式、思維方式都是獨特的,我們要尊重學(xué)生自己的選擇,不能以一個或一批學(xué)生的思維準(zhǔn)則來規(guī)定全體學(xué)生必須采用的所謂最好的方法。因此,教學(xué)中我是這樣引導(dǎo)學(xué)生的:你喜歡用哪一種方法?并說說你喜歡的理由。這樣不僅尊重了學(xué)生個性的思維方法,還培養(yǎng)了學(xué)生的個性發(fā)展。探究新知后,我安排有層次性的練習(xí),讓學(xué)生在練習(xí)中鞏固估算方法,培養(yǎng)估算意識,增強估算信心。(三)、鞏固提高1、基本練習(xí)“學(xué)以致用”,學(xué)習(xí)新知識后的練習(xí)是學(xué)生內(nèi)化知識的主要環(huán)節(jié),也是學(xué)生鞏固估算方法的環(huán)節(jié)。
4、實際生活中的應(yīng)用。提問學(xué)生:小數(shù)點位置移動引起小數(shù)大小的變化這規(guī)律在學(xué)習(xí)和生活有什么應(yīng)用?(讓學(xué)生思考在學(xué)習(xí)中,點錯小數(shù)點的位置,小數(shù)的大小就不一樣了。如果在銀行統(tǒng)計時點錯右漏寫小數(shù)點會怎樣?)教育學(xué)生做事認(rèn)真細(xì)心。(四)小結(jié)質(zhì)疑,自我評價這節(jié)課我們學(xué)習(xí)了什么?小數(shù)點位置移動引起小數(shù)大小的變化規(guī)律是怎樣的?質(zhì)疑:對今天的學(xué)習(xí)還有什么疑問嗎?(培養(yǎng)學(xué)生敢于質(zhì)疑,勇于創(chuàng)新的精神)評價:首先自評,學(xué)生對自己學(xué)得怎樣,用什么方法學(xué)習(xí),印象最深的內(nèi)容是什么進(jìn)行評介。接著可以生生互評或師生互評,教師重點表揚大部分學(xué)得好的同學(xué)或全班的同學(xué),增強學(xué)生的自信心和榮譽感,使他們更加熱愛數(shù)學(xué)。(五)作業(yè)布置:1、回憶一遍操作探索發(fā)現(xiàn)規(guī)律的整個過程,進(jìn)一步培養(yǎng)學(xué)生良好的學(xué)習(xí)方法和習(xí)慣。2、預(yù)習(xí)97頁,例2和例3,做書上98頁練習(xí)第三題。
一、說教材(一)教材簡析《假分?jǐn)?shù)化成整數(shù)或帶分?jǐn)?shù)》是小學(xué)數(shù)學(xué)五年級(下冊)第六單元中的內(nèi)容。本節(jié)內(nèi)容安排了兩個例題。這部分內(nèi)容是在學(xué)生掌握了假分?jǐn)?shù)的意義后,進(jìn)一步學(xué)習(xí)把假分?jǐn)?shù)化成整數(shù)或帶分?jǐn)?shù),有利于以后進(jìn)行分?jǐn)?shù)計算打下堅實的基礎(chǔ)。(二)教學(xué)目標(biāo)根據(jù)教材編排特點,我確定以下教學(xué)目標(biāo):1、知道帶分?jǐn)?shù)是假分?jǐn)?shù),是整數(shù)與真分?jǐn)?shù)合成的數(shù)。2、會把假分?jǐn)?shù)化成整數(shù)或帶分?jǐn)?shù)。3、使學(xué)生經(jīng)歷假分?jǐn)?shù)化成整數(shù)或帶分?jǐn)?shù)的探索過程,進(jìn)一步發(fā)展數(shù)感。4、培養(yǎng)良好的學(xué)習(xí)習(xí)慣,樹立學(xué)好數(shù)學(xué)的信心。(三)教學(xué)重、難點會把假分?jǐn)?shù)化成整數(shù)或帶分?jǐn)?shù)。二、說教法、學(xué)法通過這一環(huán)節(jié)的教學(xué),把假分?jǐn)?shù)化成整數(shù)或帶分?jǐn)?shù)時,先要讓學(xué)生根據(jù)假分?jǐn)?shù)的含義進(jìn)行思考。在這個基礎(chǔ)上,再啟發(fā)學(xué)生根據(jù)分?jǐn)?shù)與除法的關(guān)系計算出結(jié)果,并把用不同方法求得的結(jié)果進(jìn)行比較,認(rèn)識到每種方法都是有道理的。
一.說教材我今天說課的內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)北師大版七年級下冊第四單元第二節(jié)的《用關(guān)系式表示的變量間關(guān)系》。在上節(jié)課的學(xué)習(xí)中學(xué)生已通過分析表格中的數(shù)據(jù),感受到變量之間的相依關(guān)系,并用自己的語言加以描述,初步具有了有條理的思考和表達(dá)的能力,為本節(jié)的深入學(xué)習(xí)奠定了基礎(chǔ)。二.說教學(xué)目標(biāo)本節(jié)課根據(jù)新的教學(xué)理念和學(xué)生需要掌握的知識,確立本節(jié)課的三種教學(xué)目標(biāo):知識與能力目標(biāo):根據(jù)具體情況,能用適當(dāng)?shù)暮瘮?shù)表示方法刻畫簡單實際問題中變量之間的關(guān)系,能確定簡單實際問題中函數(shù)自變量的取值范圍,并會求函數(shù)值。過程與方法目標(biāo):經(jīng)歷探索某些圖形中變量之間的關(guān)系的過程,進(jìn)一步體會一個變量對另一個變量的影響,發(fā)展符號感。情感態(tài)度與價值觀目標(biāo):通過研究,學(xué)習(xí)培養(yǎng)抽象思維能力和概括能力,通過對自變量和因變量關(guān)系的表達(dá),培養(yǎng)數(shù)學(xué)建模能力,增強應(yīng)用意識。
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計算代數(shù)式.三、板書設(shè)計1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運用冪的乘方公式的探究方式和前節(jié)類似,因此在教學(xué)中可以利用該優(yōu)勢展開教學(xué),在探究過程中可以進(jìn)一步發(fā)揮學(xué)生的主動性,盡可能地讓學(xué)生在已有知識的基礎(chǔ)上,通過自主探究,獲得冪的乘方運算的感性認(rèn)識,進(jìn)而理解運算法則
解析:平行線中的拐點問題,通常需過拐點作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補.平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)
解析:根據(jù)“全等三角形的對應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時要將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、板書設(shè)計1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對應(yīng)角、對應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過練習(xí)來理解全等三角形的性質(zhì)并滲透符號語言推理.通過實例熟悉運用全等三角形的性質(zhì)解決一些簡單的實際問題
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
一、游戲活動激趣,認(rèn)識對稱物體1、游戲“猜一猜”:課件依次出示“剪刀、掃帚、飛機、梳子”的一部分,分男、女生猜。2、認(rèn)識對稱物體:1)師質(zhì)疑:為什么女生猜得又快又準(zhǔn)呢?2)小結(jié):像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱物體。(板書:對稱)二、猜想驗證新知,認(rèn)識軸對稱圖形(一)初步感知對稱圖形1、將“剪刀、飛機、扇子”等對稱物體抽象出平面圖形,讓學(xué)生觀察,這些平面圖形還是不是對稱的。2、師小結(jié):像這樣的圖形,叫做對稱圖形。(板書:圖形)(二)猜想驗證對稱圖形1、猜一猜:出示“梯形、平行四邊形、圓形、燕尾箭頭”等平面圖形,讓學(xué)生觀察。師:這些平面圖形是不是對稱圖形?怎樣證明它們是不是對稱圖形?
一、復(fù)習(xí)導(dǎo)入1、口答:最大的一位數(shù)是幾?最小的兩位數(shù)是多少?這兩個數(shù)相差多少?2、數(shù)數(shù):10個10個地數(shù),從10數(shù)到100; 1個1個地數(shù),從91數(shù)到99; 問:99加1是多少?3、導(dǎo)入:你會從100開始接著往后數(shù)嗎?今天開始我們將要學(xué)習(xí)更大的數(shù),下面請你們觀察這幅圖。二、講授新課1、出示主題圖。(1)觀察這幅圖,說一說畫面上正在發(fā)生什么事情?(2)看著畫面你想知道什么問題?引導(dǎo)學(xué)生估算畫面上的體育館大約能坐多少人?2、板書課題:1000以內(nèi)數(shù)的認(rèn)識。3、教學(xué)例1。(1)數(shù)一數(shù)。每人數(shù)出10個小方塊,說說你是怎么數(shù)的?板書:一個一個地數(shù),10個一是十。
1、教學(xué)主題圖。(1)讓學(xué)生獨立觀察教材情境圖。思考問題:[1]這幅畫面是什么地方?[2]你發(fā)現(xiàn)了畫面中有什么活動內(nèi)容?(按順序)(2)在小組中互相說一說自己觀察到了什么內(nèi)容。你想到了什么?(3)各組代表匯報。(4)教師板書學(xué)生匯報的數(shù)據(jù)。[1]這是某個校園里的活動情景圖。從圖中發(fā)現(xiàn)了教學(xué)大樓前面的兩樹之間都插著4面不同顏色的旗子,升旗臺上也飄著一面國旗。[2]運動場上每4人一組小朋友在跳繩。[3]籃球場上每5人一組準(zhǔn)備打籃球比賽。[4]板報下面擺的花是每3盆擺一組,旁邊還有很多盆花。(5)根據(jù)上面的信息(條件),想一想能提出用除法計算的問題嗎?大家在小組議一議。
通常購買同一品種的西瓜時,西瓜的質(zhì)量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結(jié)果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結(jié):本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關(guān)鍵.
【類型一】 逆用積的乘方進(jìn)行簡便運算計算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進(jìn)行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對公式an·bn=(ab)n要靈活運用,對于不符合公式的形式,要通過恒等變形轉(zhuǎn)化為公式的形式,運用此公式可進(jìn)行簡便運算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大?。?13×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問題的關(guān)鍵.三、板書設(shè)計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運用在本節(jié)的教學(xué)過程中教師可以采用與前面相同的方式展開教學(xué).教師在講解積的乘方公式的應(yīng)用時,再補充講解積的乘方公式的逆運算:an·bn=(ab)n,同時教師為了提高學(xué)生的運算速度和應(yīng)用能力,也可以補充講解:當(dāng)n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當(dāng)n為偶數(shù)時,(-a)n=an(n為正整數(shù))
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設(shè)計1.頻率及其穩(wěn)定性:在大量重復(fù)試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復(fù)實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學(xué)過程中,學(xué)生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
【類型二】 根據(jù)數(shù)軸求不等式的解關(guān)于x的不等式x-3<3+a2的解集在數(shù)軸上表示如圖所示,則a的值是()A.-3 B.-12 C.3 D.12解析:化簡不等式,得x<9+a2.由數(shù)軸上不等式的解集,得9+a=12,解得a=3,故選C.方法總結(jié):本題考查了在數(shù)軸上表示不等式的解集,利用不等式的解集得關(guān)于a的方程是解題關(guān)鍵.三、板書設(shè)計1.不等式的解和解集2.用數(shù)軸表示不等式的解集本節(jié)課學(xué)習(xí)不等式的解和解集,利用數(shù)軸表示不等式的解,讓學(xué)生體會到數(shù)形結(jié)合的思想的應(yīng)用,能夠直觀的理解不等式的解和解集的概念,為接下來的學(xué)習(xí)打下基礎(chǔ).在課堂教學(xué)中,要始終以學(xué)生為主體,以引導(dǎo)的方式鼓勵學(xué)生自己探究未知,提高學(xué)生的自我學(xué)習(xí)能力.