Sales representative2015.10-2017.12 Chuanghuantechnology trading co. LTD.1, responsible for executing the Russian market implementation of planningand organizing activities2, responsible for the collection of web information, resource management;3, integrate internal and external resources, planning overseas brandpublicity of related productsSales representative2012.04-2015.09 Globalinternational trading co. LTD.1, market research, collect relevant market dynamics and analysis, providethe basis for leadership decision-making;2, according to the market demand and customer comments, for the company'sproducts, services, and promote the improvement opinions;Sales representative2011.02-2012.01 Onemonth heeducation technology co. LTD.1, perform conventional publicizing;2, according to a specified market promotion plan to implement the companydaily promotion, key projects, cooperation projects, product release PRplanning and execution
一、2023年上半年安全生產(chǎn)工作開展情況(一)全旗安全生產(chǎn)形勢截至目前,我旗發(fā)生2起一般生產(chǎn)安全事故,死亡2人,非煤礦山、危險化學品、煙花爆竹、金屬冶煉等重點行業(yè)領域未發(fā)生生產(chǎn)安全事故,全旗安全生產(chǎn)總體形勢較為平穩(wěn)。(二)各重點行業(yè)領域安全生產(chǎn)隱患排查情況我旗全面開展對危險化學品、非煤礦山、煙花爆竹、冶金工貿(mào)等重點行業(yè)領域生產(chǎn)經(jīng)營單位安全生產(chǎn)隱患排查治理和重點領域?qū)m椪?,各項檢查21次,先后檢查各類生產(chǎn)經(jīng)營單位(企業(yè))68家次,共發(fā)現(xiàn)安全隱患231條,現(xiàn)已全部整改完成,安全生產(chǎn)行政處罰16家,罰款28.7萬元。(三)安全生產(chǎn)專項整治三年行動工作開展情況持續(xù)深入開展全旗安全生產(chǎn)專項整治三年行動集中攻堅行動,認真對照任務清單,建立健全隱患排查制度,調(diào)動各行業(yè)主管部門力量,逐條逐項推進專項整治工作,深入分析安全生產(chǎn)共性問題和突出隱患,及時動態(tài)更新“四個清單”。截至目前,各專項領域共排查企業(yè)1914家次,排查隱患732處,已整改649處,整改率89%。各部門成立聯(lián)合檢查組64次,督導檢查單位505家,警示約談72家;以三年整治行動為契機,繼續(xù)強化我旗安全生產(chǎn)薄弱環(huán)節(jié),確保全旗安全生產(chǎn)形勢持續(xù)穩(wěn)定向好。
3、拓展要求:在學生對歌曲有了一定的了解之后,我會讓學生在歌詞中適當?shù)牡胤郊尤胝Z氣詞,使歌曲更生動、形象。例如:“媽媽告訴我,家鄉(xiāng)沒有山”這句歌詞,顯得有點惋惜和遺憾之情,我覺得用“唉”比較好,下面的就分組討論。每小組派一個代表唱出自己組里填的語氣詞。在所有組里的語氣詞里選一組最好的,確定下來。全班一起演唱,并加上確定的語氣詞。唱歌比賽:將學生分4個組,一組高聲部、一組低聲部、一組加語氣詞、一組加打擊樂器(如沙錘、雙響筒、碰玲),增強他們的合作意識和合作默契。4、小結(jié)在課堂小結(jié)時我先安排了學生談一談這節(jié)課的感想,如:這節(jié)課你學到了什么?歌曲中你最喜歡那一句?而且對那些有創(chuàng)意的學生我還及時的發(fā)給他們小獎品。在本課的教學中我以表揚和鼓勵為主,隨時引導學生在音樂活動中開展自評互評和老師的隨堂評價,以提高學生的樂感和審美能力。
(1)喊:喂--喂;你好啊--你好??;(2)唱:有旋律的,2468小節(jié)的旋律"喂喂喂""嘩啦啦""叮咚叮咚"(3)這些都可能是山里的什么聲音?師生討論(4)師生接唱"大山的回聲--喂喂喂;風吹樹葉--嘩啦啦;山里的泉水--叮咚叮咚;山里的歌聲--多動聽"連接話題:如果你到了山里,你最想做什么事情?那我們就去山里摘一摘果子吧!第二部分學唱部分1、播放伴奏音樂,師生一起根據(jù)音高,做摘果子和吃果子的律動2、再次播放伴奏,邊哼唱邊表演摘果子動作過渡句:自己摘的果子可真好吃啊,我們以拉歌的形式把山里的小伙伴也叫出來吧!3、第三遍播放伴奏,教師范唱前8小節(jié)4、熟悉歌詞以畫圖的方式,將歌詞展現(xiàn)出來山里的孩子心愛山,從小就生長在山路間,山里的泉水香噴噴,山里的果子,肥又甜,山里的孩子心愛山,山里有我的好家園,山上是我們村里的樹,山下是我們村里的田。
按照要求,我們謀劃了三個項目:一是服務能力提升項目;二是3.0T磁共振購置項目;三是健康管理中心建設項目。三個項目已上報市相關部門,目前專項債資金未到位,中醫(yī)院自籌資金墊付購置了3.0T磁共振,其他兩個專項債待資金到位后,集中力量、加快推進,明確項目建設的時間節(jié)點,把握好項目進度,確保項目有序推進,如期完成。(四)“十二項重點工作”落實情況。中醫(yī)院在xx藥業(yè)投資建設的滴眼劑制劑項目,目前產(chǎn)品已完成前期相應的研發(fā),正在委托第三方進行相容性、穩(wěn)定性研究工作。投產(chǎn)后年生產(chǎn)滴眼劑約xx萬支,xx藥業(yè)預計實現(xiàn)年營業(yè)收入xx萬元。二、存在問題(一)“七個專項行動”方面。在“七個專項行動”方面,通過開展鄉(xiāng)村醫(yī)療衛(wèi)生服務體系建設提升行動,對常見病和急危重癥救治能力明顯提升,但重特大疾病的救治能力有待提升。
【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究點二:選用適當?shù)姆椒ń庖辉畏匠逃眠m當?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.
【學習目標】1 、學習過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應用。2、學習重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
先讓學生自己總結(jié),然后互相交流,得出結(jié)論。解一元一次方程,一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質(zhì)22、 去括號----去括號法則3、 移項----等式性質(zhì)14、 合并同類項----合并同類項法則5、 系數(shù)化為1.----等式性質(zhì)2【課堂練習】練習:解下列一元一次方程解方程: (2) ;思路點拔:(1)去分母所選的乘數(shù)應是所有分母的最小公倍數(shù),不應遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時,不要漏掉等號兩邊不含分母的項。(3)去掉分母后,分數(shù)線也同時去掉,分子上的多項式用括號括起來?;仡櫧庖陨戏匠痰娜^程,表示了一元一次方程解法的一般步驟,通過去分母—去括號—移項—合并同類項—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉(zhuǎn)化。
解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.
情景感知概括運用設疑誘導動手操作合作交流嘗試活動啟發(fā)引導類比發(fā)現(xiàn)演練結(jié)合觀察分析自主探索問題討論利用嘗試活動“我來當老師!”給學生提供設計問題的機會,培養(yǎng)他們實事求是的科學態(tài)度,勇于質(zhì)疑、敢于創(chuàng)新的良好習慣及數(shù)學應用能力。例1、根據(jù)因式分解的概念,判斷下列由左邊到右邊的變形,哪些是因式分解,哪些不是,為什么?通過羅列一些似是而非、容易產(chǎn)生錯誤的對象讓學生辨析,促使他們認識概念的本質(zhì)、確定概念的外延,從而形成良好的認知結(jié)構(gòu)。例2:解答下列問題:(1)993-99能被99整除嗎?能被98整除嗎?能被100整除嗎?(2)求代數(shù)式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。讓學生進一步體會用分解因式解決相關問題的簡捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),則m=,n=。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)
還有其他解法嗎?從中讓學生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導學生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.
1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學生活動:分學習小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應注意移項要改變符號.(三)理解性質(zhì),應用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學生活動:要求學生對課前解方程的變形能說出哪一過程是移項.對比練習: 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學生活動:把學生分四組練習此題,一組、二組同學(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)
說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設計意圖:例1是讓學生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習:課本44頁練習2,3題5.歸納總結(jié),結(jié)合板書,引導學生自我總結(jié),重點知識和學習方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習題1,2題
探究點三:列一元一次方程解應用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結(jié)果,不寫分析過程)解析:(1)先設該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程再求解.
小明說:“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結(jié):根據(jù)乘法分配律和去括號法則(括號前面是“+”號,把“+”號和括號去掉,括號內(nèi)各項都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內(nèi)各項都改變符號)去括號時要注意:1、 不要漏乘括號內(nèi)的任何一項;2、若括號前面是“-”號,記住去括號后括號內(nèi)各項都變號.習題訓練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡單的應用題,如課本P123練一練3或補充一些題,如含小括號、中括號、大括號的方程(這方面課本安排幾乎沒有,只限淺顯問題,教師不必深究)
解:設每張300元的門票買了x張,則每張400元的門票買了(8-x)張,由題意得300x+400×(8-x)=2700,解得x=5,∴買400元每張的門票張數(shù)為8-5=3(張).答:每張300元的門票買了5張,每張400元的門票買了3張.方法總結(jié):解題的關鍵是熟練掌握列方程解應用題的一般步驟:①根據(jù)題意找出等量關系;②列出方程;③解方程;④作答.三、板書設計本節(jié)課的教學先讓學生回顧上一節(jié)所學的知識,復習鞏固方程的解法,讓學生進一步明白解方程的步驟是逐漸發(fā)展的,后面的步驟是在前面步驟的基礎上發(fā)展而成的.然后通過一個實際問題,列出一個有括號的方程,大膽放手讓學生去探索、猜想各種解法,去嘗試各種解題的途徑,啟發(fā)學生在化歸思想影響下想到要去括號.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關鍵.三、板書設計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎上進行的拓展延伸,在教學時要給學生足夠主動權(quán)和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.
【類型三】 分式方程無解,求字母的值若關于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.