三、課后自測(cè):1、如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,BC= 6cm,動(dòng)點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng)。經(jīng)過(guò)多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開(kāi)始沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移 動(dòng)過(guò)程中始終保持DE∥BC,DF∥AC,問(wèn)點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時(shí)的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時(shí)的速度追趕。在涉嫌船只不改變航向和航速的前提下,問(wèn)需要幾小時(shí)才 能追上( 點(diǎn)B為追上時(shí)的位置)?
【教學(xué)目標(biāo)】(一)教學(xué)知識(shí)點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識(shí)和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過(guò)程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過(guò)學(xué)生自己的探索活動(dòng),達(dá)到對(duì)拋物線(xiàn)自身特點(diǎn)的認(rèn)識(shí)和對(duì)二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會(huì)畫(huà)y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫(huà)y=ax2的圖象,體會(huì)數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們?cè)诮虒W(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡(jiǎn)單的二次函數(shù)y=x2入手去研究
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長(zhǎng)AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開(kāi)口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長(zhǎng)有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個(gè)合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來(lái)解.三、板書(shū)設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺(tái),還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會(huì),使課堂真正成為學(xué)生展示自我的舞臺(tái).充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問(wèn)題、解決問(wèn)題的獨(dú)到見(jiàn)解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
雨后天空的彩虹、河上架起的拱橋等都會(huì)形成一條曲線(xiàn).問(wèn)題1:這些曲線(xiàn)能否用函數(shù)關(guān)系式表示?問(wèn)題2:如何畫(huà)出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類(lèi)型一】 二次函數(shù)y=x2和y=-x2的圖象的畫(huà)法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫(huà)出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說(shuō)出拋物線(xiàn)(1)(2)的對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)、開(kāi)口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線(xiàn)的方法作出兩個(gè)函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線(xiàn)可得圖象如下:(1)拋物線(xiàn)y=x2的對(duì)稱(chēng)軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線(xiàn)y=-x2的對(duì)稱(chēng)軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開(kāi)口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫(huà)拋物線(xiàn)y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對(duì)稱(chēng)性,先用描點(diǎn)法描出拋物線(xiàn)的一側(cè),再利用對(duì)稱(chēng)性畫(huà)另一側(cè).
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類(lèi)型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過(guò)y軸上的點(diǎn)(0,c),∴兩個(gè)函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯(cuò)誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開(kāi)口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯(cuò)誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開(kāi)口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開(kāi)口方向、對(duì)稱(chēng)軸、頂點(diǎn)坐標(biāo)等)是解決問(wèn)題的關(guān)鍵.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類(lèi)型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
練習(xí):現(xiàn)在你能解答課本85頁(yè)的習(xí)題3.1第6題嗎?有一個(gè)班的同學(xué)去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問(wèn)這個(gè)班共多少同學(xué)?小結(jié)提問(wèn):1、今天你又學(xué)會(huì)了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書(shū)中的“對(duì)消”與“還原”是什么意思嗎?3、今天討論的問(wèn)題中的相等關(guān)系又有何共同特點(diǎn)?學(xué)生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(xiàng)(等式的性質(zhì)1)合并(分配律)系數(shù)化為1(等式的性質(zhì)2)表示同一量的兩個(gè)不同式子相等作業(yè):1、 必做題:課本習(xí)題2、 選做題:將一塊長(zhǎng)、寬、高分別為4厘米、2厘米、3厘米的長(zhǎng)方體橡皮泥捏成一個(gè)底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)
方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點(diǎn)三:工程問(wèn)題一個(gè)道路工程,甲隊(duì)單獨(dú)施工9天完成,乙隊(duì)單獨(dú)做24天完成.現(xiàn)在甲乙兩隊(duì)共同施工3天,因甲另有任務(wù),剩下的工程由乙隊(duì)完成,問(wèn)乙隊(duì)還需幾天才能完成?解析:首先設(shè)乙隊(duì)還需x天才能完成,由題意可得等量關(guān)系:甲隊(duì)干三天的工作量+乙隊(duì)干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊(duì)還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊(duì)還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問(wèn)題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時(shí)間=工作總量,當(dāng)題中沒(méi)有一些必須的量時(shí),為了簡(jiǎn)便,應(yīng)設(shè)其為1.三、板書(shū)設(shè)計(jì)“希望工程”義演題目特點(diǎn):未知數(shù)一般有兩個(gè),等量關(guān)系也有兩個(gè)解題思路:利用其中一個(gè)等量關(guān)系設(shè)未知數(shù),利用另一個(gè)等量關(guān)系列方程
解:設(shè)截取圓鋼的長(zhǎng)度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長(zhǎng)度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長(zhǎng)方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長(zhǎng)方體的體積”就是我們所要尋找的等量關(guān)系.探究點(diǎn)三:面積變化問(wèn)題將一個(gè)長(zhǎng)、寬、高分別為15cm、12cm和8cm的長(zhǎng)方體鋼坯鍛造成一個(gè)底面是邊長(zhǎng)為12cm的正方形的長(zhǎng)方體鋼坯.試問(wèn):是鍛造前的長(zhǎng)方體鋼坯的表面積大,還是鍛造后的長(zhǎng)方體鋼坯的表面積大?請(qǐng)你計(jì)算比較.解析:由鍛造前后兩長(zhǎng)方體鋼坯體積相等,可求出鍛造后長(zhǎng)方體鋼坯的高.再計(jì)算鍛造前后兩長(zhǎng)方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長(zhǎng)方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長(zhǎng)方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長(zhǎng)方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
(2)∵點(diǎn)G是BC的中點(diǎn),BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理3:對(duì)角線(xiàn)互相平分的四邊形是平行四邊形;2.平行線(xiàn)的距離;如果兩條直線(xiàn)互相平行,則其中一條直線(xiàn)上任意一點(diǎn)到另一條直線(xiàn)的距離都相等,這個(gè)距離稱(chēng)為平行線(xiàn)之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過(guò)分組討論、操作探究以及合作交流等方式來(lái)進(jìn)行,在探究?jī)蓷l平行線(xiàn)間的距離時(shí),要讓學(xué)生進(jìn)行合作交流.在解決有關(guān)平行四邊形的問(wèn)題時(shí),要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷(xiāo)售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤(rùn)定價(jià),無(wú)人購(gòu)買(mǎi).決定打折出售,但仍無(wú)人購(gòu)買(mǎi),結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤(rùn).這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營(yíng)T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場(chǎng)調(diào)查,銷(xiāo)售量與銷(xiāo)售單價(jià)滿(mǎn)足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷(xiāo)售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷(xiāo)售單價(jià)是多少時(shí) ,可以獲利9100元?
二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流。活動(dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過(guò)程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
1:甲、乙、丙三個(gè)村莊合修一條水渠,計(jì)劃需要176個(gè)勞動(dòng)力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個(gè)村莊各派多少個(gè)勞動(dòng)力?2:某校組織活動(dòng),共有100人參加,要把參加活動(dòng)的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問(wèn)這兩組人數(shù)各有多少人?目的:檢測(cè)學(xué)生本節(jié)課掌握知識(shí)點(diǎn)的情況,及時(shí)反饋學(xué)生學(xué)習(xí)中存在的問(wèn)題.實(shí)際活動(dòng)效果:從學(xué)生做題的情況看,大部分學(xué)生都能正確地列出方程,但其中一部分人并不能有意識(shí)地用“列表格”法來(lái)分析問(wèn)題,因此,教師仍需引導(dǎo)他們能學(xué)會(huì)用“列表格”這個(gè)工具,有利于以后遇上復(fù)雜問(wèn)題能很靈活地得到解決.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1. 兩個(gè)未知量,兩個(gè)等量關(guān)系,如何列方程;2. 尋找中間量;3. 學(xué)會(huì)用表格分析數(shù)量間的關(guān)系.
活動(dòng)目的:(1)通過(guò)小組討論活動(dòng),讓學(xué)生理解坐標(biāo)系的特點(diǎn),并能應(yīng)用特點(diǎn)解決問(wèn)題。(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣。(3)在小組討論中培養(yǎng)學(xué)生勇于探索,團(tuán)結(jié)協(xié)作的精神。第四環(huán)節(jié):練習(xí)隨堂練習(xí) (體現(xiàn)建立直角坐標(biāo)系的多樣性)(補(bǔ)充)某地為了發(fā)展城市群,在現(xiàn)有的四個(gè)中小城市A,B,C,D附近新建機(jī)場(chǎng)E,試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫(xiě)出各點(diǎn)的坐標(biāo)。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進(jìn)步,從知識(shí)和能力上兩個(gè)方面總結(jié),老師予于肯定和鼓勵(lì)。目的:鼓勵(lì)學(xué)生大膽發(fā)言,敢于表達(dá)自己的觀點(diǎn),同時(shí)學(xué)生之間可以相互學(xué)習(xí),共同提高,老師給予肯定和鼓勵(lì),激發(fā)學(xué)生的學(xué)習(xí)熱情。第六環(huán)節(jié):布置作業(yè)A類(lèi):課本習(xí)題5.5。B類(lèi):完成A類(lèi)同時(shí),補(bǔ)充:(1)已知點(diǎn)A到x軸、y軸的距離均為4,求A點(diǎn)坐標(biāo);(2)已知x軸上一點(diǎn)A(3,0),B(3,b),且AB=5,求b的值。
因?yàn)閤3表示手機(jī)部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場(chǎng)共有兩種進(jìn)貨方案.方案1:購(gòu)甲型號(hào)手機(jī)30部,乙型號(hào)手機(jī)10部;方案2:購(gòu)甲型號(hào)手機(jī)20部,丙型號(hào)手機(jī)20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進(jìn)貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時(shí),要注意不同型號(hào)的手機(jī)數(shù)量和單價(jià)要對(duì)應(yīng).三、板書(shū)設(shè)計(jì)增收節(jié)支問(wèn)題分析解決列二元一次方程,組解決實(shí)際問(wèn)題)增長(zhǎng)率問(wèn)題利潤(rùn)問(wèn)題利用圖表分析等量關(guān)系方案選擇通過(guò)問(wèn)題的解決使學(xué)生進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)世界的密切聯(lián)系,樂(lè)于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話(huà)題的研討,從中懂得數(shù)學(xué)的價(jià)值,逐步形成運(yùn)用數(shù)學(xué)的意識(shí);并且通過(guò)對(duì)問(wèn)題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟(jì)意識(shí),增強(qiáng)他們的節(jié)約和有效合理利用資源的意識(shí).
答:書(shū)包單價(jià)92元,隨身聽(tīng)單價(jià)360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買(mǎi)禮物,恰好趕上商家促銷(xiāo),人民商場(chǎng)所有商品打八折銷(xiāo)售,家樂(lè)福全場(chǎng)購(gòu)物滿(mǎn)100元返購(gòu)物券30元銷(xiāo)售(不足100元不返券,購(gòu)物券全場(chǎng)通用),但他只帶了400元錢(qián),如果他只在一家購(gòu)買(mǎi)看中的這兩樣物品,你能幫助他選擇在哪一家購(gòu)買(mǎi)嗎?若兩家都可以選擇,在哪一家購(gòu)買(mǎi)更省錢(qián)?提示:書(shū)包單價(jià)92元,隨身聽(tīng)單價(jià)360元。2)在人民商場(chǎng)購(gòu)買(mǎi)隨聲聽(tīng)與書(shū)包各一樣需花費(fèi)現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場(chǎng)購(gòu)買(mǎi)。在家樂(lè)??上然ìF(xiàn)金360元購(gòu)買(mǎi)隨身聽(tīng),再利用得到的90元返券,加上2元現(xiàn)金購(gòu)買(mǎi)書(shū)包,共花現(xiàn)金360+2=362(元)。因?yàn)?62<400,所以也可以選擇在家樂(lè)福購(gòu)買(mǎi)。因?yàn)?62>361.6,所以在人民商場(chǎng)購(gòu)買(mǎi)更省錢(qián)。第五環(huán)節(jié):學(xué)習(xí)反思;(5分鐘,學(xué)生思考回答,不足的地方教師補(bǔ)充和強(qiáng)調(diào)。)
四.知識(shí)梳理談?wù)動(dòng)靡辉畏匠探鉀Q例1實(shí)際問(wèn)題的方法。五、目標(biāo)檢測(cè)設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長(zhǎng)方形拼成,則每個(gè)小長(zhǎng)方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長(zhǎng)40米、寬20米的長(zhǎng)方形空地上計(jì)劃新建一塊長(zhǎng)9米、寬7米的長(zhǎng)方形花圃.(1)若請(qǐng)你在這塊空地上設(shè)計(jì)一個(gè)長(zhǎng)方形花圃,使它的面積比學(xué)校計(jì)劃新建的長(zhǎng)方形花圃的面積多1平方米,請(qǐng)你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長(zhǎng)方形花圃周長(zhǎng)不變的情況下,長(zhǎng)方形花圃的面積能否增加2平方米?如果能,請(qǐng)求出長(zhǎng)方形花圃的長(zhǎng)和寬;如果不能,請(qǐng)說(shuō)明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡(jiǎn)單的圖形面積問(wèn)題.
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過(guò)程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類(lèi)比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過(guò)程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書(shū)設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒(méi)有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒(méi)有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開(kāi)平方法的選用因式分解法或直接開(kāi)平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒(méi)有實(shí)數(shù)根.沒(méi)有特殊要求時(shí),一般不用配方法.