提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

幼兒園大班科學教案: 路線

  • 高教版中職數學基礎模塊下冊:9.1《平面的基本性質》教學設計

    高教版中職數學基礎模塊下冊:9.1《平面的基本性質》教學設計

    課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關系—基礎模塊 2.了解平面的基本性質和推論,會應用定理和推論解釋生活中的一些現象—基礎模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當的符號表示點、線、面之間的關系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差

  • 高教版中職數學基礎模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設計

    高教版中職數學基礎模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設計

    課題序號 授課班級 授課課時2授課形式 教學方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學目的1、使學生認識柱、錐、球及其組合體的結構特征,并能運用這些特征描述生活中簡單物體的結構。 2、讓學生了解柱、錐、球的側面積和體積的計算公式。 3、培養(yǎng)學生觀察能力、計算能力。

  • 高教版中職數學基礎模塊下冊:6.2《等差數列》教學設計

    高教版中職數學基礎模塊下冊:6.2《等差數列》教學設計

    系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數2課時授課周數第一周授課日期2012.2.15授課地點 教室課題第六章數列分課題§6.2 等差數列教學目標1. 理解等差數列的概念,掌握等差數列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數列的概念和通項公式解決問題. 3.等差數列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數列的概念及其通項公式. 教學難點等差數列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內容姓名成績1.數列的定義? 答: 2. 數列的通項公式? 答: 板書設計 §6.2.1等差數列的概念 1. 1.等差數列的定義 公差:d 2.常數列 3.等差數列的通項公式 an=a1+(n-1)d. 等差數列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.

  • 【高教版】中職數學拓展模塊:1.2《正弦型函數》教學設計

    【高教版】中職數學拓展模塊:1.2《正弦型函數》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數. *創(chuàng)設情境 興趣導入 與正弦函數圖像的做法類似,可以用“五點法”作出正弦型函數的圖像.正弦型函數的圖像叫做正弦型曲線. 介紹 播放 課件 質疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數在一個周期內的簡圖. 分析 函數與函數的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關鍵點的橫坐標,分別令,,,,,求出對應的值與函數的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應五個關鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯結各點,得到函數在一個周期內的圖像(如圖). 圖 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 15

  • 【高教版】中職數學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    【高教版】中職數學拓展模塊:1.3《正弦定理與余弦定理》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設情境 興趣導入 在實際問題中,經常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關,可以歸結為解三角形問題,經常需要應用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領 講解 說明 引領 觀察 思考 主動 求解 觀察 通過 例題 進一 步領 會 注意 觀察 學生 是否 理解 知識 點 40

  • 【高教版】中職數學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    【高教版】中職數學拓展模塊:3.1《排列與組合》優(yōu)秀教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設情境 興趣導入 基礎模塊中,曾經學習了兩個計數原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數. 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據分步計數原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本虾!貞c. 介紹 播放 課件 質疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結 歸納 分析 關鍵 詞語 思考 理解 記憶 引導學生發(fā)現解決問題方法 20

  • 【高教版】中職數學拓展模塊:3.2《二項式定理》教學設計

    【高教版】中職數學拓展模塊:3.2《二項式定理》教學設計

    一、定義:  ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數 叫做二項式系數,第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數:二項展開式共(二項式的指數+1)項;指數:二項展開式各項的第一字母依次降冪(其冪指數等于相應二項式系數的下標與上標的差),第二字母依次升冪(其冪指數等于二項式系數的上標),并且每一項中兩個字母的系數之和均等于二項式的指數;系數:各項的二項式系數下標等于二項式指數;上標等于該項的項數減去1(或等于第二字母的冪指數;2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數,若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數”,它是解決組合多項式問題的原始依據.又注意到在的二項展開式中,若將各項中組合數以外的因子視為這一組合數的系數,則易見展開式中各組合數的系數依次成等比數列.因此,解決組合數的系數依次成等比數列的求值或證明問題,二項式公式也是不可或缺的理論依據.

  • 【高教版】中職數學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    【高教版】中職數學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數的自變量 隨機變量 連續(xù)型隨機變量 函數可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數學基礎模塊下冊:10.1《計數原理》教學設計

    高教版中職數學基礎模塊下冊:10.1《計數原理》教學設計

    授課 日期 班級16高造價 課題: §10.1 計數原理 教學目的要求: 1.掌握分類計數原理與分步計數原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別

  • 高教版中職數學基礎模塊下冊:10.2《概率》教學設計

    高教版中職數學基礎模塊下冊:10.2《概率》教學設計

    課程課題隨機事件和概率授課教師李丹丹學時數2授課班級 授課時間 教學地點 背景分析正確使用兩個基本原理的前提是要學生清楚兩個基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點學生是容易理解的,問題在于怎樣合理地進行分類和分步教學中給出的練習均在課本例題的基礎上稍加改動過的,目的就在于幫助學生對這一知識的理解與應用 學習目標 設 定知識目標能力(技能)目標態(tài)度與情感目標1、理解隨機試驗、隨機事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 1 會用隨機試驗、隨機事件、必然事件、不可能事件等概念 2 會用基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件 3、掌握事件的基本關系與運算 了解學習本章的意義,激發(fā)學生的興趣. 學習任務 描 述 任務一,隨機試驗、隨機事件、必然事件、不可能事件等概念 任務二,理解基本事件空間、基本事件的概念,會用集合表示基本事件空間和事件

  • 高教版中職數學基礎模塊下冊:10.3《總體、樣本與抽樣方法》教學設計

    高教版中職數學基礎模塊下冊:10.3《總體、樣本與抽樣方法》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設情境 興趣導入 【實驗】 商店進了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質量.得到下面的數據(如表10-6所示): 蘋果編號12345678910質量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數據,就可以估計出這批蘋果的平均質量及蘋果的大小是否均勻. 介紹 質疑 講解 說明 了解 思考 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質量是研究對象的總體,每個蘋果的質量是研究的個體. 講解 說明 引領 分析 理解 記憶 帶領 學生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學生上學期數學期末考試成績,指出其中的總體與個體. 解 該班所有學生的數學期末考試成績是總體,每一個學生的數學期末考試成績是個體. 【試一試】 我們經常用燈泡的使用壽命來衡量燈炮的質量.指出在鑒定一批燈泡的質量中的總體與個體. 說明 強調 引領 觀察 思考 主動 求解 通過例題進一步領會 35

  • 高教版中職數學基礎模塊下冊:10.4《用樣本估計總體》教學設計

    高教版中職數學基礎模塊下冊:10.4《用樣本估計總體》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設情境 興趣導入 【知識回顧】 初中我們曾經學習過頻數分布圖和頻數分布表,利用它們可以清楚地看到數據分布在各個組內的個數. 【知識鞏固】 例1 某工廠從去年全年生產某種零件的日產記錄(件)中隨機抽取30份,得到以下數據: 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數據.其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數據分為6組. 列出頻數分布表 【小提示】 設定分點數值時需要考慮分點值不要與樣本數據重合. 分 組頻 數 累 計頻 數340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質疑 引領 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 各組內數據的個數,叫做該組的頻數.每組的頻數與全體數據的個數之比叫做該組的頻率. 計算上面頻數分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數據分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數值上等于對應矩形的面積. 【想一想】 各小矩形的面積之和應該等于1.為什么呢? 【新知識】 圖10-4顯示,日產量為344~346件的天數最多,其頻率等于該矩形的面積,即 . 根據樣本的數據,可以推測,去年的生產這種零件情況:去年約有的天數日產量為344~346件. 頻率分布直方圖可以直觀地反映樣本數據的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當,這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當的抽樣方法得到樣本數據; (2) 計算數據最大值和最小值、確定組距和組數,確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數據的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領 分析 仔細 分析 關鍵 語句 觀察 理解 記憶 帶領 學生 分析 25

  • 空間向量基本定理教學設計人教A版高中數學選擇性必修第一冊

    空間向量基本定理教學設計人教A版高中數學選擇性必修第一冊

    反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時,一般要結合圖形,運用向量加法、減法的平行四邊形法則、三角形法則,以及數乘向量的運算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時,通常選取公共起點最集中的向量或關系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點出發(fā)的三條棱所對應的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點,點G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構成空間的一個正交基底.

  • 兩點間的距離公式教學設計人教A版高中數學選擇性必修第一冊

    兩點間的距離公式教學設計人教A版高中數學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 傾斜角與斜率教學設計人教A版高中數學選擇性必修第一冊

    傾斜角與斜率教學設計人教A版高中數學選擇性必修第一冊

    (2)l的傾斜角為90°,即l平行于y軸,所以m+1=2m,得m=1.延伸探究1 本例條件不變,試求直線l的傾斜角為銳角時實數m的取值范圍.解:由題意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若將本例中的“N(2m,1)”改為“N(3m,2m)”,其他條件不變,結果如何?解:(1)由題意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由題意知m+1=3m,解得m=1/2.直線斜率的計算方法(1)判斷兩點的橫坐標是否相等,若相等,則直線的斜率不存在.(2)若兩點的橫坐標不相等,則可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)進行計算.金題典例 光線從點A(2,1)射到y(tǒng)軸上的點Q,經y軸反射后過點B(4,3),試求點Q的坐標及入射光線的斜率.解:(方法1)設Q(0,y),則由題意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即點Q的坐標為 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)設Q(0,y),如圖,點B(4,3)關于y軸的對稱點為B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由題意得,A、Q、B'三點共線.從而入射光線的斜率為kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,點Q的坐標為(0,5/3).

  • 人教版高中數學選擇性必修二等比數列的概念 (1) 教學設計

    人教版高中數學選擇性必修二等比數列的概念 (1) 教學設計

    新知探究我們知道,等差數列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數” 。類比等差數列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產生的后代個數依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數學選擇性必修二等差數列的前n項和公式(1)教學設計

    人教版高中數學選擇性必修二等差數列的前n項和公式(1)教學設計

    高斯(Gauss,1777-1855),德國數學家,近代數學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數列:1,2,3,…,n,"… " 前100項的和問題.等差數列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數列{an} 是等差數列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數的奇偶進行分類討論.當n為偶數時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數數時, n-1為偶數

  • 人教版高中數學選擇性必修二變化率問題教學設計

    人教版高中數學選擇性必修二變化率問題教學設計

    導語在必修第一冊中,我們研究了函數的單調性,并利用函數單調性等知識,定性的研究了一次函數、指數函數、對數函數增長速度的差異,知道“對數增長” 是越來越慢的,“指數爆炸” 比“直線上升” 快得多,進一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數關系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內的平均速度v ?近似的描述它的運動狀態(tài)。

  • 人教版高中數學選擇性必修二導數的四則運算法則教學設計

    人教版高中數學選擇性必修二導數的四則運算法則教學設計

    求函數的導數的策略(1)先區(qū)分函數的運算特點,即函數的和、差、積、商,再根據導數的運算法則求導數;(2)對于三個以上函數的積、商的導數,依次轉化為“兩個”函數的積、商的導數計算.跟蹤訓練1 求下列函數的導數:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數的導數(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數的導數;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 人教版高中數學選修3成對數據的相關關系教學設計

    人教版高中數學選修3成對數據的相關關系教學設計

    由樣本相關系數??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關,且相關程度很強。脂肪含量與年齡變化趨勢相同.歸納總結1.線性相關系數是從數值上來判斷變量間的線性相關程度,是定量的方法.與散點圖相比較,線性相關系數要精細得多,需要注意的是線性相關系數r的絕對值小,只是說明線性相關程度低,但不一定不相關,可能是非線性相關.2.利用相關系數r來檢驗線性相關顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內收入的總和)與A商品銷售額的10年數據,如表所示.畫出散點圖,判斷成對樣本數據是否線性相關,并通過樣本相關系數推斷居民年收入與A商品銷售額的相關程度和變化趨勢的異同.

上一頁123...252253254255256257258259260261262263下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!