三、說教學(xué)理念:通過觀察、猜測(cè)及動(dòng)手操作實(shí)驗(yàn)等方法,向?qū)W生滲透有序的數(shù)學(xué)思想。四、說教學(xué)過程:一、創(chuàng)設(shè)情境、激趣導(dǎo)入。小朋友們喜歡什么樣的球類運(yùn)動(dòng)呢?讓學(xué)生各抒已見。當(dāng)有人說到足球時(shí)。老師馬上引到學(xué)校冬季運(yùn)動(dòng)會(huì),我們?nèi)昙?jí)3個(gè)班的比賽情況,結(jié)果我們班得了第一。那我們班比賽了幾場(chǎng)?學(xué)生回答兩場(chǎng)。三個(gè)班比賽,每?jī)蓚€(gè)班比賽一場(chǎng),那一共要比賽多少場(chǎng)呢?四人小組合作完成。然后匯報(bào),并說理由。二.動(dòng)手實(shí)踐,自主探究1.2002年世界杯足球C組比賽有幾國(guó)家?是哪幾個(gè)國(guó)家?讓學(xué)生發(fā)表意見。他們說不出,老師再告訴他們。2.如果這四個(gè)隊(duì)每?jī)蓚€(gè)隊(duì)踢一場(chǎng)球,一共要踢多少場(chǎng)?(課件演示主題圖)3.讓學(xué)生大膽說一說、猜一猜。4.四人小組用學(xué)具卡片擺一擺、討論討論。
說教學(xué)內(nèi)容:可能性的大?。ㄈ私贪嫒昙?jí)上冊(cè)P106~108例3、例4、例5)說教學(xué)目標(biāo):1、知識(shí)技能目標(biāo):使學(xué)生進(jìn)一步體驗(yàn)不確定事件,知道事件發(fā)生的可能性是有大小的。2、過程方法目標(biāo):經(jīng)歷事件發(fā)生的可能性大小的探索過程,初步感受隨機(jī)現(xiàn)象的統(tǒng)計(jì)規(guī)律性;在活動(dòng)交流中培養(yǎng)合作學(xué)習(xí)的意識(shí)和能力。3、情感態(tài)度價(jià)值觀目標(biāo):感受數(shù)學(xué)就在自己身邊,體會(huì)數(shù)學(xué)學(xué)習(xí)與現(xiàn)實(shí)的聯(lián)系;進(jìn)一步培養(yǎng)學(xué)生求實(shí)態(tài)度和科學(xué)精神。說教學(xué)重難點(diǎn)教學(xué)重點(diǎn):學(xué)生通過試驗(yàn)操作、分析推理知道事件發(fā)生的可能性有大有小。教學(xué)難點(diǎn):利用事件發(fā)生的可能性的知識(shí)解決實(shí)際問題。說教學(xué)過程:一、感受可能性的大小。1.出示問題:(1)談話引入:通過前面的學(xué)習(xí),我們已經(jīng)知道了在生活中,有的事情可能發(fā)生,有的事情是不可能發(fā)生的,今天我們進(jìn)一步研究可能性的問題。
一年級(jí)學(xué)生是7-8歲的兒童,思維活躍,課堂上喜歡表現(xiàn)自己,在學(xué)習(xí)中隨意性非常明顯,渴望得到教師或同學(xué)的贊許。“比大小”這一內(nèi)容的教學(xué)是在學(xué)生已經(jīng)初步會(huì)認(rèn)、讀、寫5以內(nèi)各數(shù)的基礎(chǔ)上教學(xué)的。充分利用學(xué)生的生活經(jīng)驗(yàn),引導(dǎo)學(xué)生用1-5各數(shù)來表示物體的個(gè)數(shù),還要引導(dǎo)學(xué)生通過觀察、比較、操作等實(shí)踐活動(dòng),增加感性認(rèn)識(shí),初步接觸集合、對(duì)應(yīng)、統(tǒng)計(jì)等數(shù)學(xué)思想。相信本節(jié)課內(nèi)容的教學(xué),學(xué)生掌握并不會(huì)感到十分的困難。 說教學(xué)策略:結(jié)合本班的學(xué)情,為了突出學(xué)生的主體地位,在教學(xué)中讓學(xué)生積極動(dòng)手、動(dòng)眼、動(dòng)腦、動(dòng)口,引導(dǎo)學(xué)生通過自己的學(xué)習(xí),體驗(yàn)知識(shí)的形成過程,積極開展本節(jié)課的教學(xué)活動(dòng)。為更好地突出重點(diǎn),突破難點(diǎn),我準(zhǔn)備采用以下教學(xué)方法。一、創(chuàng)設(shè)情境,調(diào)動(dòng)學(xué)生的生活經(jīng)驗(yàn),引起學(xué)習(xí)興趣。使學(xué)生好學(xué)。二、動(dòng)手實(shí)踐,探索新知。調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,使學(xué)生會(huì)學(xué),在學(xué)習(xí)過程中有意培養(yǎng)學(xué)生主動(dòng)探索的能力。
在課改進(jìn)行得如火如荼的今天,新課程如一股春風(fēng)吹進(jìn)了我們的校園,走進(jìn)了每一位師生的生活。我校從去年秋季開始選用了人教版的《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書》,一年多來,我們不斷更新教學(xué)理念,刻苦學(xué)習(xí)、大膽創(chuàng)新,探索了一些適合本地教學(xué)實(shí)際的有益途徑,本節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書一年級(jí)上冊(cè)的內(nèi)容,在學(xué)生已經(jīng)學(xué)習(xí)了8和9 的加減法后進(jìn)行教學(xué)的。學(xué)好本節(jié)課將為今后學(xué)習(xí)文字應(yīng)用題打下堅(jiān)實(shí)的基礎(chǔ)。在教學(xué)過程中我將教材做了一些小小的改動(dòng),根據(jù)優(yōu)化課堂教學(xué)的需要對(duì)教材進(jìn)行了再加工,旨在因地制宜,使學(xué)生進(jìn)一步掌握加減法的意義和10以內(nèi)加減法的計(jì)算方法。提高學(xué)生運(yùn)用所學(xué)知識(shí)解決實(shí)際問題的能力。讓學(xué)生在學(xué)習(xí)中受到熱愛自然、保護(hù)環(huán)境的教育,同時(shí)在教學(xué)中培養(yǎng)他們的合作意識(shí)和創(chuàng)新精神。
(4)判斷中進(jìn)行教學(xué)內(nèi)容的遞深,形成了反思——學(xué)習(xí)——強(qiáng)化的整個(gè)學(xué)習(xí)過程。在學(xué)生做出“6是倍數(shù)”的正確判斷之后,并不簡(jiǎn)單換章,而是以此為契機(jī)“教學(xué)找一個(gè)數(shù)的因數(shù)”以談話導(dǎo)入,形成知識(shí)相互的聯(lián)系與區(qū)別,“談話:必須說清誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個(gè)數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”(5)討論互評(píng),自主學(xué)習(xí)放手讓學(xué)生學(xué)習(xí)找一個(gè)數(shù)的因數(shù),從無(wú)序到有序,從自尋到互學(xué),請(qǐng)學(xué)生板書,學(xué)生評(píng)價(jià),“提問:你是用什么方法找到一個(gè)數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導(dǎo),掌握不失總結(jié)如:提問:5為什么不是36的因數(shù)?(因?yàn)?6÷5不能整除,有余數(shù))
3.第三個(gè)環(huán)節(jié)是:鞏固深化,應(yīng)用新知。首先讓學(xué)生完成課本76頁(yè)練習(xí)十三的第一題。主要是檢驗(yàn)學(xué)生對(duì)復(fù)式折線統(tǒng)計(jì)圖繪制方法的掌握情況,并能對(duì)復(fù)式折線統(tǒng)計(jì)圖所表達(dá)的信息進(jìn)行簡(jiǎn)單的分析、比較。練習(xí)時(shí),先讓學(xué)生在書上獨(dú)立完成,再說一說制圖的正確步驟,我用多媒體演示,并提醒學(xué)生注意最高氣溫和最低氣溫對(duì)應(yīng)的折線各用什么表示,還要寫上數(shù)據(jù)和制圖日期,根據(jù)學(xué)生的制作情況,還可以組織學(xué)生討論一下,兩條折線上的數(shù)據(jù)怎樣寫就不混淆了?最后讓學(xué)生看圖回答題中的問題,這里重點(diǎn)幫助學(xué)生弄清“溫差”的含義,另外,在回答最后一個(gè)問題時(shí),學(xué)生可能會(huì)說“我喜歡看統(tǒng)計(jì)圖”,我就重點(diǎn)讓學(xué)生說說為什么喜歡看統(tǒng)計(jì)圖?從而讓學(xué)生進(jìn)一步體會(huì)復(fù)式折線統(tǒng)計(jì)圖的直觀、形象的優(yōu)越性
2、81頁(yè)的做一做。做完后,引導(dǎo)學(xué)生觀察4和8;16和32這一組的最大公因數(shù)的特點(diǎn):當(dāng)較大數(shù)是較小數(shù)的倍數(shù)時(shí),他們的最大公因數(shù)是較小數(shù)。1和7;8和9這一組數(shù)的最大公因數(shù)只有1。這樣的練習(xí)設(shè)計(jì),目的是讓學(xué)生發(fā)現(xiàn)求最大公因數(shù)中的特殊情況。四、遷移運(yùn)用,拓展探究寫出下列各分?jǐn)?shù)分子和分母的最大公因數(shù)。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識(shí)的鋪墊。全課總結(jié):通過今天的學(xué)習(xí),你有什么收獲?同桌互說,指名匯報(bào)。這樣的總結(jié),從知識(shí)的層面上做了一次回顧。并及時(shí)的總結(jié)了解學(xué)情,真正做到“堂堂清”五、說板書設(shè)計(jì)我本節(jié)課的板書設(shè)計(jì)力圖全面而簡(jiǎn)明的將本課的內(nèi)容傳遞給學(xué)生,便于學(xué)生理解和記憶。各位評(píng)委老師,我僅從教材、教法、學(xué)法、及教學(xué)過程、板書設(shè)計(jì)等幾個(gè)方面對(duì)本課進(jìn)行說明。這只是我預(yù)設(shè)的一種方案,但是課堂千變?nèi)f化的生成效果,最終還要和學(xué)生、課堂相結(jié)合。說課的不足之處還請(qǐng)多多指教,我的說課到此結(jié)束,謝謝各位評(píng)委老師。
(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長(zhǎng)線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對(duì)畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡(jiǎn)便.三、板書設(shè)計(jì)
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個(gè)數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€(gè)位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時(shí),14-x=6.所以這個(gè)兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個(gè),且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書設(shè)計(jì)幾何問題及數(shù)字問題幾何問題面積問題動(dòng)點(diǎn)問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識(shí)方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識(shí).體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價(jià)值.
三、課后自測(cè):1、如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,BC= 6cm,動(dòng)點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng)。經(jīng)過多長(zhǎng)時(shí)間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開始沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移 動(dòng)過程中始終保持DE∥BC,DF∥AC,問點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時(shí)的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時(shí)的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時(shí)才 能追上( 點(diǎn)B為追上時(shí)的位置)?
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
四.知識(shí)梳理談?wù)動(dòng)靡辉畏匠探鉀Q例1實(shí)際問題的方法。五、目標(biāo)檢測(cè)設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長(zhǎng)方形拼成,則每個(gè)小長(zhǎng)方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長(zhǎng)40米、寬20米的長(zhǎng)方形空地上計(jì)劃新建一塊長(zhǎng)9米、寬7米的長(zhǎng)方形花圃.(1)若請(qǐng)你在這塊空地上設(shè)計(jì)一個(gè)長(zhǎng)方形花圃,使它的面積比學(xué)校計(jì)劃新建的長(zhǎng)方形花圃的面積多1平方米,請(qǐng)你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長(zhǎng)方形花圃周長(zhǎng)不變的情況下,長(zhǎng)方形花圃的面積能否增加2平方米?如果能,請(qǐng)求出長(zhǎng)方形花圃的長(zhǎng)和寬;如果不能,請(qǐng)說明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡(jiǎn)單的圖形面積問題.
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.
∴此方程無(wú)解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對(duì)于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤(rùn)定價(jià),無(wú)人購(gòu)買.決定打折出售,但仍無(wú)人購(gòu)買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤(rùn).這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營(yíng)T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場(chǎng)調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤(rùn)定價(jià),無(wú)人購(gòu)買.決定打折出售,但仍無(wú)人購(gòu)買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤(rùn).這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營(yíng)T恤衫,已知成批購(gòu)進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場(chǎng)調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請(qǐng)你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個(gè)三角形相似”的判定方法.2.經(jīng)歷兩個(gè)三角形相似的探索過程,體驗(yàn)用類比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識(shí)的興趣,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會(huì)運(yùn)用判定方法判定兩個(gè)三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會(huì)準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對(duì)應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達(dá)到加深理解判定方法2的條件的目的的.