提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

干部隊(duì)伍建設(shè)經(jīng)驗(yàn)總結(jié)交流材料

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.2《等差數(shù)列》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.2《等差數(shù)列》教學(xué)設(shè)計(jì)

    系(部)醫(yī)藥授課教師戚文擷授課班級(jí)11(5),11(6)班授課類型新授課授課時(shí)數(shù)2課時(shí)授課周數(shù)第一周授課日期2012.2.15授課地點(diǎn) 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學(xué)目標(biāo)1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式;掌握等差中項(xiàng)的概念. 2. 逐步靈活應(yīng)用等差數(shù)列的概念和通項(xiàng)公式解決問(wèn)題. 3.等差數(shù)列的前N項(xiàng)之和 . 4.培養(yǎng)學(xué)生分析、比較、歸納的邏輯思維能力. . 2. 3.教學(xué)重點(diǎn)等差數(shù)列的概念及其通項(xiàng)公式. 教學(xué)難點(diǎn)等差數(shù)列通項(xiàng)公式的靈活運(yùn)用. 教學(xué)方法情境教學(xué)法、自主探究式教學(xué)方法教學(xué)器材及設(shè)備黑板、粉筆復(fù)習(xí)提問(wèn)提問(wèn)內(nèi)容姓名成績(jī)1.?dāng)?shù)列的定義? 答: 2. 數(shù)列的通項(xiàng)公式? 答: 板書(shū)設(shè)計(jì) §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項(xiàng)公式 an=a1+(n-1)d. 等差數(shù)列的前n 項(xiàng)和公式: 例題 練習(xí)作業(yè)布置習(xí)題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學(xué)方法.充分利用現(xiàn)實(shí)情景,盡可能地增加教學(xué)過(guò)程的趣味性、實(shí)踐性.我再整個(gè)教學(xué)中強(qiáng)調(diào)學(xué)生的主動(dòng)參與,讓學(xué)生自己去分析、探索,在探索過(guò)程中研究和領(lǐng)悟得出的結(jié)論,從而達(dá)到使學(xué)生既獲得知識(shí)又發(fā)展智能的目的.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    授課 日期 班級(jí)16高造價(jià) 課題: §6.3等比數(shù)列 教學(xué)目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個(gè)數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項(xiàng)公式; 3.掌握等比數(shù)列前 n 項(xiàng)和公式及推導(dǎo)過(guò)程,能用公式求相關(guān)參數(shù); 教學(xué)重點(diǎn)、難點(diǎn):運(yùn)用等比數(shù)列的通項(xiàng)公式求相關(guān)參數(shù) 授課方法: 任務(wù)驅(qū)動(dòng)法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》 授課執(zhí)行情況及分析: 板書(shū)設(shè)計(jì)或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學(xué)生板書(shū)區(qū)) 2. 等比數(shù)列的通項(xiàng)公式 3.等比數(shù)列的求和公式

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問(wèn)題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點(diǎn)的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動(dòng)腦思考 探索新知 如圖8-12所示,兩條相交直線的交點(diǎn),既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點(diǎn)的坐標(biāo). 觀察圖8-13,直線、相交于點(diǎn)P,如果不研究終邊相同的角,共形成四個(gè)正角,分別為、、、,其中與,與為對(duì)頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時(shí),兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時(shí)稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說(shuō)明 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn)*鞏固知識(shí) 典型例題 例6 一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-9).在A處觀察到燈塔C在船的北偏東方向,小時(shí)后船行駛到B處,此時(shí)燈塔C在船的北偏東方向,求B處和燈塔C的距離(精確到0.1海里). 圖1-9 A 解因?yàn)椤螻BC=,A=,所以.由題意知 (海里). 由正弦定理得 (海里). 答:B處離燈塔約為海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和(圖1-10),在平地上選擇適合測(cè)量的點(diǎn)C,如果,m,m,試計(jì)算隧道AB的長(zhǎng)度(精確到m). 圖1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的長(zhǎng)度約為409m. 例8 三個(gè)力作用于一點(diǎn)O(如圖1-11)并且處于平衡狀態(tài),已知的大小分別為100N,120N,的夾角是60°,求F的大小(精確到1N)和方向. 圖1-11 解 由向量加法的平行四邊形法則知,向量表示F1,F(xiàn)2的合力F合,由力的平衡原理知,F(xiàn)應(yīng)在的反向延長(zhǎng)線上,且大小與F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F(xiàn)與F1間的夾角是180°–33°=147°. 答:F約為191N,F(xiàn)與F合的方向相反,且與F1的夾角約為147°. 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn)

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.2《正弦型函數(shù)》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導(dǎo)入 與正弦函數(shù)圖像的做法類似,可以用“五點(diǎn)法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例3 作出函數(shù)在一個(gè)周期內(nèi)的簡(jiǎn)圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個(gè)關(guān)鍵點(diǎn)的橫坐標(biāo),分別令,,,,,求出對(duì)應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標(biāo),描出對(duì)應(yīng)五個(gè)關(guān)鍵點(diǎn)(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點(diǎn),得到函數(shù)在一個(gè)周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 15

  • 【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導(dǎo)入 在實(shí)際問(wèn)題中,經(jīng)常需要計(jì)算高度、長(zhǎng)度、距離和角的大小,這類問(wèn)題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問(wèn)題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學(xué)生自然的走向知識(shí)點(diǎn) 0 5*鞏固知識(shí) 典型例題 例6一艘船以每小時(shí)36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時(shí)后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因?yàn)椤螻BC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測(cè)量的點(diǎn)C,如果C=60°,AB = 350m,BC = 450m,試計(jì)算隧道AB的長(zhǎng)度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長(zhǎng)度約為409m. 圖1-15 引領(lǐng) 講解 說(shuō)明 引領(lǐng) 觀察 思考 主動(dòng) 求解 觀察 通過(guò) 例題 進(jìn)一 步領(lǐng) 會(huì) 注意 觀察 學(xué)生 是否 理解 知識(shí) 點(diǎn) 40

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.1《排列與組合》優(yōu)秀教學(xué)設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導(dǎo)入 基礎(chǔ)模塊中,曾經(jīng)學(xué)習(xí)了兩個(gè)計(jì)數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個(gè)步驟.完成第1個(gè)步驟有k1種方法,完成第2個(gè)步驟有k2種方法,……,完成第n個(gè)步驟有kn種方法,并且只有這n個(gè)步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個(gè)問(wèn)題: 在北京、重慶、上海3個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同的機(jī)票? 這個(gè)問(wèn)題就是從北京、重慶、上海3個(gè)民航站中,每次取出2個(gè)站,按照起點(diǎn)在前,終點(diǎn)在后的順序排列,求不同的排列方法的總數(shù). 首先確定機(jī)票的起點(diǎn),從3個(gè)民航站中任意選取1個(gè),有3種不同的方法;然后確定機(jī)票的終點(diǎn),從剩余的2個(gè)民航站中任意選取1個(gè),有2種不同的方法.根據(jù)分步計(jì)數(shù)原理,共有3×2=6種不同的方法,即需要準(zhǔn)備6種不同的飛機(jī)票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上海→北京,上海→重慶. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導(dǎo) 啟發(fā)學(xué)生得出結(jié)果 0 15*動(dòng)腦思考 探索新知 我們將被取的對(duì)象(如上面問(wèn)題中的民航站)叫做元素,上面的問(wèn)題就是:從3個(gè)不同元素中,任取2個(gè),按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個(gè)不同元素中,任取m (m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列,時(shí)叫做選排列,時(shí)叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語(yǔ) 思考 理解 記憶 引導(dǎo)學(xué)生發(fā)現(xiàn)解決問(wèn)題方法 20

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.2《二項(xiàng)式定理》教學(xué)設(shè)計(jì)

    一、定義:  ,這一公式表示的定理叫做二項(xiàng)式定理,其中公式右邊的多項(xiàng)式叫做的二項(xiàng)展開(kāi)式;上述二項(xiàng)展開(kāi)式中各項(xiàng)的系數(shù) 叫做二項(xiàng)式系數(shù),第項(xiàng)叫做二項(xiàng)展開(kāi)式的通項(xiàng),用表示;叫做二項(xiàng)展開(kāi)式的通項(xiàng)公式.二、二項(xiàng)展開(kāi)式的特點(diǎn)與功能1. 二項(xiàng)展開(kāi)式的特點(diǎn)項(xiàng)數(shù):二項(xiàng)展開(kāi)式共(二項(xiàng)式的指數(shù)+1)項(xiàng);指數(shù):二項(xiàng)展開(kāi)式各項(xiàng)的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項(xiàng)式系數(shù)的下標(biāo)與上標(biāo)的差),第二字母依次升冪(其冪指數(shù)等于二項(xiàng)式系數(shù)的上標(biāo)),并且每一項(xiàng)中兩個(gè)字母的系數(shù)之和均等于二項(xiàng)式的指數(shù);系數(shù):各項(xiàng)的二項(xiàng)式系數(shù)下標(biāo)等于二項(xiàng)式指數(shù);上標(biāo)等于該項(xiàng)的項(xiàng)數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項(xiàng)展開(kāi)式的功能注意到二項(xiàng)展開(kāi)式的各項(xiàng)均含有不同的組合數(shù),若賦予a,b不同的取值,則二項(xiàng)式展開(kāi)式演變成一個(gè)組合恒等式.因此,揭示二項(xiàng)式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項(xiàng)式問(wèn)題的原始依據(jù).又注意到在的二項(xiàng)展開(kāi)式中,若將各項(xiàng)中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見(jiàn)展開(kāi)式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問(wèn)題,二項(xiàng)式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.1《計(jì)數(shù)原理》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.1《計(jì)數(shù)原理》教學(xué)設(shè)計(jì)

    授課 日期 班級(jí)16高造價(jià) 課題: §10.1 計(jì)數(shù)原理 教學(xué)目的要求: 1.掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理的概念和區(qū)別; 2.能利用兩個(gè)原理分析和解決一些簡(jiǎn)單的應(yīng)用問(wèn)題; 3.通過(guò)對(duì)一些應(yīng)用問(wèn)題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學(xué)重點(diǎn)、難點(diǎn): 兩個(gè)原理的概念與區(qū)別 授課方法: 任務(wù)驅(qū)動(dòng)法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》、課件 授課執(zhí)行情況及分析: 板書(shū)設(shè)計(jì)或授課提綱 §10.1 計(jì)數(shù)原理 1、加法原理 2、乘法原理 3、兩個(gè)原理的區(qū)別

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.2《概率》教學(xué)設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.2《概率》教學(xué)設(shè)計(jì)

    課程課題隨機(jī)事件和概率授課教師李丹丹學(xué)時(shí)數(shù)2授課班級(jí) 授課時(shí)間 教學(xué)地點(diǎn) 背景分析正確使用兩個(gè)基本原理的前提是要學(xué)生清楚兩個(gè)基本原理使用的條件;分類用加法原理,分步用乘法原理,單純這點(diǎn)學(xué)生是容易理解的,問(wèn)題在于怎樣合理地進(jìn)行分類和分步教學(xué)中給出的練習(xí)均在課本例題的基礎(chǔ)上稍加改動(dòng)過(guò)的,目的就在于幫助學(xué)生對(duì)這一知識(shí)的理解與應(yīng)用 學(xué)習(xí)目標(biāo) 設(shè) 定知識(shí)目標(biāo)能力(技能)目標(biāo)態(tài)度與情感目標(biāo)1、理解隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2、理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 1 會(huì)用隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 2 會(huì)用基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件 3、掌握事件的基本關(guān)系與運(yùn)算 了解學(xué)習(xí)本章的意義,激發(fā)學(xué)生的興趣. 學(xué)習(xí)任務(wù) 描 述 任務(wù)一,隨機(jī)試驗(yàn)、隨機(jī)事件、必然事件、不可能事件等概念 任務(wù)二,理解基本事件空間、基本事件的概念,會(huì)用集合表示基本事件空間和事件

  • 人教A版高中數(shù)學(xué)必修二復(fù)數(shù)的三角表示教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二復(fù)數(shù)的三角表示教學(xué)設(shè)計(jì)

    本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對(duì)復(fù)數(shù)的拓展延伸,這樣更有利于我們對(duì)復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問(wèn)題;2.邏輯推理:通過(guò)課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問(wèn)題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過(guò)經(jīng)歷提出問(wèn)題—推導(dǎo)過(guò)程—得出結(jié)論—例題講解—練習(xí)鞏固的過(guò)程,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:?jiǎn)栴}一:你還記得復(fù)數(shù)的幾何意義嗎?問(wèn)題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來(lái)表示復(fù)數(shù)呢?如何表示?

  • 人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計(jì)

    人教A版高中數(shù)學(xué)必修二平面與平面垂直教學(xué)設(shè)計(jì)

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點(diǎn),且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點(diǎn)C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個(gè)平面相交,如果它們所成的二面角是直二面角,就說(shuō)這兩個(gè)平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時(shí),常用鉛錘來(lái)檢測(cè)所砌的墻面與地面是否垂直,如果系有鉛錘的細(xì)繩緊貼墻面,工人師傅被認(rèn)為墻面垂直于地面,否則他就認(rèn)為墻面不垂直于地面,這種方法說(shuō)明了什么道理?

  • 人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一三角函數(shù)的應(yīng)用教學(xué)設(shè)計(jì)(2)

    本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來(lái)學(xué)習(xí)三角函數(shù)模型的簡(jiǎn)單應(yīng)用,進(jìn)一步突出函數(shù)來(lái)源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會(huì)用三角函數(shù)模型解決一些簡(jiǎn)單的實(shí)際問(wèn)題.2.實(shí)際問(wèn)題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問(wèn)題抽象為三角函數(shù)模型問(wèn)題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問(wèn)題中抽取基本的數(shù)學(xué)關(guān)系來(lái)建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問(wèn)題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問(wèn)題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問(wèn)題、數(shù)形結(jié)合、抽象概括等能力.

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)設(shè)計(jì)鑲嵌圖案教案

    人教版新課標(biāo)小學(xué)數(shù)學(xué)五年級(jí)下冊(cè)設(shè)計(jì)鑲嵌圖案教案

    師:同學(xué)們,在四年級(jí)的時(shí)候,我們已經(jīng)了解了圖形的密鋪,請(qǐng)你說(shuō)一說(shuō),什么是圖形的密鋪?(沒(méi)有重疊、沒(méi)有空隙地鋪在平面上,就是密鋪。)師:圖形的密鋪又可以叫做鑲嵌,以上四個(gè)圖片,都是由哪些基本圖形密鋪(鑲嵌)而成的呢?(請(qǐng)學(xué)生邊指邊說(shuō)。)師:還有哪些圖形也可以鑲嵌?(學(xué)生可能回答:三角形,平行四邊形,梯形,菱形,正六邊形,……)師:今天就請(qǐng)你發(fā)揮一下想象力,設(shè)計(jì)一些與眾不同的鑲嵌圖形。[設(shè)計(jì)意圖說(shuō)明:學(xué)生在四年級(jí)已經(jīng)初步了解了圖形的密鋪(鑲嵌)現(xiàn)象,四幅圖片是四年級(jí)下冊(cè)教材《三角形》單元中《密鋪》內(nèi)容中的原圖。本單元在此基礎(chǔ)上,通過(guò)數(shù)學(xué)游戲拓展鑲嵌圖形的范圍,讓學(xué)生用圖形變換設(shè)計(jì)鑲嵌圖案,進(jìn)一步感受圖形變換帶來(lái)的美感以及在生活中的應(yīng)用。]二、新授探究一:利用平移變換設(shè)計(jì)鑲嵌圖形

  • 第四單元《教學(xué)設(shè)計(jì)》 說(shuō)課稿  2021—2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    第四單元《教學(xué)設(shè)計(jì)》 說(shuō)課稿 2021—2022學(xué)年統(tǒng)編版高中語(yǔ)文必修下冊(cè)

    (六)說(shuō)教學(xué)策略1.專題性海量的媒介信息必須加以選擇或者整合,以項(xiàng)目為依據(jù),進(jìn)行信息篩選,形成專題性閱讀與交流;培養(yǎng)學(xué)生對(duì)文本信息“化零為整”的能力,提升跨媒介閱讀與交流學(xué)習(xí)的充實(shí)感。2.情境化情境教學(xué)應(yīng)指向?qū)W生的應(yīng)用,建構(gòu)富有符合時(shí)代氣息的內(nèi)容,與生活經(jīng)驗(yàn)更加貼合,對(duì)學(xué)生的語(yǔ)言建構(gòu)與運(yùn)用有所提升,在情境中能夠有效地進(jìn)行交流。3.任務(wù)化以任務(wù)為導(dǎo)向的序列化學(xué)習(xí),可以為學(xué)生構(gòu)建學(xué)習(xí)路線圖、學(xué)習(xí)框架等具體任務(wù)引導(dǎo);或以跨媒介的認(rèn)識(shí)與應(yīng)用為任務(wù)的設(shè)置引導(dǎo);甚至以閱讀和交流作為序列化安排的實(shí)踐引導(dǎo)。4.整合性跨媒介閱讀與交流是結(jié)合線上線下的資源,形成新的“超媒介”,也能實(shí)現(xiàn)對(duì)信息進(jìn)行“深加工”,多種媒介的信息整合只為一個(gè)核心教學(xué)內(nèi)容服務(wù)。5.互文性語(yǔ)言文字是語(yǔ)文之生命,我們是立足于語(yǔ)言文字的探討,音樂(lè)、圖像、視頻等文本與傳統(tǒng)語(yǔ)言文字文本形成互文,觸發(fā)學(xué)生對(duì)學(xué)習(xí)內(nèi)容立體化和具體化的感悟,提升學(xué)生的審美能力。

  • 北師大版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)《設(shè)計(jì)秋游方案》說(shuō)課稿

    北師大版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)《設(shè)計(jì)秋游方案》說(shuō)課稿

    六、說(shuō)學(xué)法本節(jié)課的學(xué)法主要是自主探究法、合作交流法。教法和學(xué)法是和諧統(tǒng)一的,相互聯(lián)系,密不可分。教學(xué)中要注意發(fā)揮學(xué)生的主體地位,充分調(diào)動(dòng)學(xué)生的各種感官參與學(xué)習(xí),誘發(fā)其內(nèi)在的潛力,獨(dú)立主動(dòng)的探索,使他們不僅學(xué)會(huì),而且會(huì)學(xué)。學(xué)生通過(guò)小組合作的方式,自主探究設(shè)計(jì)出秋游方案,然后每個(gè)小組間進(jìn)行交流,最后推選出最合理可行的方案。學(xué)生通過(guò)解決生活中的實(shí)際問(wèn)題,從中發(fā)現(xiàn)與數(shù)學(xué)之間的聯(lián)系。并通過(guò)同伴間的交流、討論等多種方法制定出解決方案,他們從生活中抽象,在實(shí)踐中體驗(yàn),最后在討論中明理,從而得出了最佳的方案。七、說(shuō)教學(xué)過(guò)程為了能很好地化解重點(diǎn)、突破難點(diǎn)達(dá)到預(yù)期的教學(xué)目標(biāo),我設(shè)計(jì)了三個(gè)教學(xué)環(huán)節(jié),下面,我就從這三個(gè)環(huán)節(jié)一一進(jìn)行闡述。(一)創(chuàng)設(shè)情境、激發(fā)興趣

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)下冊(cè)設(shè)計(jì)校園說(shuō)課稿2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級(jí)下冊(cè)設(shè)計(jì)校園說(shuō)課稿2篇

    二、說(shuō)學(xué)情分析:在學(xué)生學(xué)習(xí)了位置與方向、面積等有關(guān)知識(shí)的基礎(chǔ)上,教材安排了“設(shè)計(jì)校園”的實(shí)踐活動(dòng)。通過(guò)設(shè)計(jì)學(xué)生熟悉的環(huán)境──“校園”的過(guò)程,進(jìn)一步鞏固學(xué)生已經(jīng)學(xué)習(xí)的有關(guān)知識(shí),讓學(xué)生學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際生活中的問(wèn)題,培養(yǎng)收集、整理、分析信息的意識(shí)和能力,以及愛(ài)學(xué)校的良好情感。教材以重新設(shè)計(jì)校園為主題,從收集信息、分析信息、設(shè)計(jì)方案三個(gè)方面安排了整個(gè)實(shí)踐活動(dòng)。三、說(shuō)學(xué)習(xí)目標(biāo)和重難點(diǎn):1、通過(guò)學(xué)生自主調(diào)查、討論交流尋找出解決問(wèn)題的方法,最后設(shè)計(jì)出自己喜歡的校園。2、讓學(xué)生更加理解東、西、南、北、東南、西南、東北、西北八個(gè)方位,進(jìn)一步鞏固學(xué)生已經(jīng)學(xué)習(xí)的有關(guān)知識(shí)。3、讓學(xué)生學(xué)會(huì)應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際生活中的問(wèn)題,培養(yǎng)收集、整理、分析信息的意識(shí)和能力,逐步提高解決問(wèn)題的能力,以及熱愛(ài)學(xué)校的良好情感。

  • 新人教版高中英語(yǔ)必修3Unit 1 Festivals and celebrations-Discovering Useful Structure教學(xué)設(shè)計(jì)

    新人教版高中英語(yǔ)必修3Unit 1 Festivals and celebrations-Discovering Useful Structure教學(xué)設(shè)計(jì)

    4.That was an experience that frightened everyone. →That was _____________________. 答案:1. taking 2. being discussed 3. in the reading room 4. a frightening experienceStep 6 The meaning and function of V-ing as the predicative動(dòng)詞-ing形式作表語(yǔ),它通常位于系動(dòng)詞后面,用以說(shuō)明主語(yǔ)“是什么”或“怎么樣”一種表示主語(yǔ)的特質(zhì)、特征和狀態(tài), 其作用相當(dāng)于形容詞; 另一種具體說(shuō)明主語(yǔ)的內(nèi)容, 即主語(yǔ)等同于表語(yǔ), 兩者可互換。The music they are playing sounds so exciting. 他們演奏的音樂(lè)聽(tīng)起來(lái)令人激動(dòng)。The result is disappointing. 結(jié)果令人失望。Our job is playing all kinds of music. 我們的工作就是演奏各種音樂(lè)。Seeing is believing. 眼見(jiàn)為實(shí)。Step 7 Practice1. It is ________(amaze) that the boy is able to solve the problem so quickly.2. Buying a car is simply _______(waste) money. 3. Please stop making the noise—it’s getting ________(annoy). 4. complete the passage with the appropriate -ing form.La Tomatina is a festival that takes place in the Spanish town Bunol every August. I think many food festivals are __________ because people are just eating. however, this festival is _________ because people don't actually eat the tomatoes. Instead, they throw them at each other! the number of people ________ part in this tomato fight, can reach up to 20,000, and it is a very __________ fight that lasts for a whole hour. The _______ thing is how clean Bunol is after the tomatoes are washed away after the fight. this is because the juice form tomatoes is really good for making surfaces clean!答案:1. amazing 2. wasting 3. annoying4. boring interesting taking exciting amazing

  • 新人教版高中英語(yǔ)必修3Unit 1 Festivals and Celebrations-Reading and Thinking教學(xué)設(shè)計(jì)

    新人教版高中英語(yǔ)必修3Unit 1 Festivals and Celebrations-Reading and Thinking教學(xué)設(shè)計(jì)

    The topic of this part is “Discover the reasons for festivals and celebrations.The Listening & Speaking & Talking part aims at talking about the experiences and feelings or emotions about the festivals and celebrations. This section aims at detecting the reason why the people celebrate the festivals, the time, the places, the types and the way of celebrations. It also explains why some traditions in the old celebrations are disappearing, like the firecrackers in the big cities and some new things are appearing like the prosperity of business or commerce. 1. Students can talk about what festivals they know and the reasons and the way of celebrating them.2. Students should learn the reading skills such as the headline and get the topic sentences, the structures of articles.3. Students can understand the past, the present situation of some festival around the world and why there are some changes about them. 4. Students can have the international awareness about the festivals.1. Students should learn the reading skills such as the headline and get the topic sentences, the structures of articles.2. Students can understand the past, the present situation of some festival around the world and why there are some changes about them.Step 1 Lead in---Small talkWhat festival do you like best ? Why ?I like the Spring Festivals because I can set off the fireworks, receive the lucky money and enjoy the Gala with my families.Step 2 Before reading---Pair workWhy do people celebrate different festivals ?The Spring Festivals is to celebrate the end of winter and the coming of spring and new life.The Mid-autumn Day is to celebrate the harvest and admire the moon.

上一頁(yè)123...979899100101102103104105106107108下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!