教學(xué)目標(biāo):1.能利用三角函數(shù)概念推導(dǎo)出特殊角的三角函數(shù)值.2.在探索特殊角的三角函數(shù)值的過程中體會(huì)數(shù)形結(jié)合思想.教學(xué)重點(diǎn):特殊角30°、60°、45°的三角函數(shù)值.教學(xué)難點(diǎn):靈活應(yīng)用特殊角的三角函數(shù)值進(jìn)行計(jì)算.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.如圖,用小寫字母表示下列三角函數(shù):sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三邊長有什么特殊的數(shù)量關(guān)系?如果∠A=45°,那么三邊長有什么特殊的數(shù)量關(guān)系?二、導(dǎo)讀:仔細(xì)閱讀課本內(nèi)容后完成下面填空:
解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱,根據(jù)點(diǎn)C在對稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱.∵點(diǎn)C在對稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.
解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結(jié)果為36.538 445 77.再按鍵:顯示結(jié)果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習(xí)1. 使用計(jì)算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計(jì)算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學(xué)習(xí)小結(jié)內(nèi)容總結(jié)不同計(jì)算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運(yùn)用計(jì)算器一定要注意計(jì)算器說明書的保管與使用。方法歸納在解決直角三角形的相關(guān)問題時(shí),常常使用計(jì)算器幫助我們處理比較復(fù)雜的計(jì)算。
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個(gè)數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€(gè)位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時(shí),14-x=6.所以這個(gè)兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個(gè),且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書設(shè)計(jì)幾何問題及數(shù)字問題幾何問題面積問題動(dòng)點(diǎn)問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識(shí)方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識(shí).體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價(jià)值.
三、課后自測:1、如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,BC= 6cm,動(dòng)點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動(dòng),一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動(dòng)。經(jīng)過多長時(shí)間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開始沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移 動(dòng)過程中始終保持DE∥BC,DF∥AC,問點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時(shí)的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時(shí)的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時(shí)才 能追上( 點(diǎn)B為追上時(shí)的位置)?
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
四.知識(shí)梳理談?wù)動(dòng)靡辉畏匠探鉀Q例1實(shí)際問題的方法。五、目標(biāo)檢測設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長方形拼成,則每個(gè)小長方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計(jì)劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計(jì)一個(gè)長方形花圃,使它的面積比學(xué)校計(jì)劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價(jià),無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.
5.一件上衣原價(jià)每件500元,第一次降價(jià)后,銷售甚慢,第二次大幅度降價(jià)的百分率是第一次的2 倍,結(jié)果以每件240元的價(jià)格迅速出售,求每次降價(jià)的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價(jià),無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價(jià)每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時(shí)單價(jià)是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在一段時(shí)間內(nèi),單價(jià)是13.5元時(shí),銷售量是500件,而單價(jià)每降低1元,就可以多售200件。請你幫助分析,銷售單價(jià)是多少時(shí) ,可以獲利9100元?
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
∴此方程無解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.
2、課標(biāo)要求對于本節(jié)課內(nèi)容課標(biāo)要求:探索并掌握兩個(gè)三角形全等的條件;注重所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重經(jīng)歷觀察、操作、推理、想像等探索過程。初步建立空間觀念,發(fā)展幾何直覺;在探索并掌握兩個(gè)三角形全等的條件,與他人合作交流的過程中,發(fā)展合情推理,進(jìn)一步學(xué)習(xí)有條理的思考與表達(dá)。二、學(xué)生分析 1、七年級學(xué)生的理解能力和思維特征和生理特征,學(xué)生好動(dòng)性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚(yáng)等特點(diǎn),所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點(diǎn),一方面要運(yùn)用直觀生動(dòng)的形象,激發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要不斷創(chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解,充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,體現(xiàn)學(xué)生的主體地位。
(二)自主探究,學(xué)習(xí)新知。(1)認(rèn)識(shí)“11”。讓學(xué)生說說身邊的“11”,接著數(shù)出11根小棒。根據(jù)學(xué)生已有的知識(shí)和經(jīng)驗(yàn),猜想學(xué)生能順利地?cái)?shù)出;再接著讓學(xué)生另外數(shù)出11根小棒,動(dòng)手?jǐn)[一擺,探討一下還有沒有別的更好的擺法。比較各種擺法的不同點(diǎn)。[在學(xué)習(xí)新知,突破重難點(diǎn)這一環(huán)節(jié),讓學(xué)生動(dòng)口說一說,動(dòng)手?jǐn)[一擺,用眼觀察,用腦思考,使學(xué)生通過具體實(shí)物比較各種擺法,讓學(xué)生借助實(shí)物感知10根一捆的原因,建立以一代十的表象認(rèn)知。](2)學(xué)習(xí)例2中的“15、20”,加深理解組成。讓學(xué)生數(shù)出15根小棒,動(dòng)手?jǐn)[一擺,捆一捆。引導(dǎo)學(xué)生運(yùn)用上面發(fā)現(xiàn)的容易看出數(shù)量的方法,擺一擺,捆一捆,同桌交流,互相猜猜,根據(jù)實(shí)物說出數(shù)量,根據(jù)實(shí)物說數(shù)的組成,再倒過來根據(jù)組成說出這個(gè)數(shù)。如:“15是由1個(gè)十和5個(gè)一組成,1個(gè)十和5個(gè)一組成15。”同樣,讓學(xué)生動(dòng)手?jǐn)[擺,捆捆,看看,說說,學(xué)習(xí)“20”。
(三)聯(lián)系生活實(shí)際,學(xué)會(huì)運(yùn)用數(shù) 在學(xué)生認(rèn)識(shí)了1—5各數(shù)以后,設(shè)計(jì)游戲,讓學(xué)生在自己身上,教室里,家里找一找,數(shù)一數(shù),并用學(xué)過的數(shù)說一句話. 這樣就讓學(xué)生把生活實(shí)際與數(shù)學(xué)較好的聯(lián)系起來,學(xué)會(huì)在生活中運(yùn)用數(shù)學(xué)解決問題. (四)動(dòng)手操作圓片,學(xué)會(huì)比較數(shù)的大小 1,認(rèn)識(shí)數(shù)的意義以后,讓學(xué)生自己擺圓片,擺一擺,比一比,哪個(gè)數(shù)大,你是怎么想的 滲透了自然數(shù)的計(jì)算單位和相鄰兩個(gè)自然數(shù)相差1. 2,認(rèn)識(shí)數(shù)的大小以后,進(jìn)行猜數(shù)游戲,如5的前面是幾 3的后面是幾 還有可能是幾 通過反復(fù)練習(xí),學(xué)生較好的掌握了數(shù)的大小比較這一知識(shí)點(diǎn). 3,最后學(xué)習(xí)寫數(shù).寫數(shù)是本堂課的另一個(gè)重點(diǎn),教師要培養(yǎng)學(xué)生良好的寫字習(xí)慣.學(xué)生對1——5各數(shù)早已很熟悉了,主要是引導(dǎo)學(xué)生規(guī)矩,工整的寫數(shù).這一教學(xué)環(huán)節(jié)就要充分利用電腦軟件的直觀性,清楚的顯示1——5各數(shù)運(yùn)筆的軌跡,先讓學(xué)生觀察,感知,再通過描紅,獨(dú)立書寫達(dá)到預(yù)期的效果.
1、多媒體情境:林可看大家準(zhǔn)備得很辛苦,便從家里帶了10瓶飲料要個(gè)伙伴們喝,可是一個(gè)袋子裝不完,想分為兩個(gè)袋子裝,她可能會(huì)怎樣裝呢?2、用學(xué)具代替飲料,親自動(dòng)手?jǐn)[一擺。并說一說你是怎么分的?3、匯報(bào)不同的分法。(結(jié)合匯報(bào)情況,多媒體演示10的組成)4、同桌交流:用什么方法記住10的組成?5、游戲:師生互動(dòng)老師說一個(gè)數(shù),學(xué)生說一個(gè)數(shù),兩個(gè)數(shù)組成10。生生互動(dòng)說數(shù)并出手指,兩個(gè)同學(xué)出的手指合起來是10。(從創(chuàng)設(shè)情境,學(xué)生動(dòng)手操作,同桌交流,都體現(xiàn)了使學(xué)生成為學(xué)習(xí)的主人,這是小學(xué)數(shù)學(xué)課堂教學(xué)模式改革的方向。允許學(xué)生用自己已有的數(shù)的分成經(jīng)驗(yàn),用不同的方法去學(xué)習(xí),使不同的學(xué)生在學(xué)習(xí)上得到不同的發(fā)展,體現(xiàn)了因材施教的過程。并在游戲中化抽象為具體,化枯燥為愉悅,實(shí)現(xiàn)學(xué)生在輕松快樂的氛圍中深化感知。)
讓學(xué)生再用計(jì)算器計(jì)算,然后讓學(xué)生談?wù)動(dòng)龅降膯栴}(計(jì)算器已經(jīng)不能把這些數(shù)顯示出來了)。最后讓學(xué)生根據(jù)上面的計(jì)算結(jié)果,找出規(guī)律,再直接寫出后四題的得數(shù),并組織學(xué)生交流,要求學(xué)生說說自己的思考過程及依據(jù),確認(rèn)發(fā)現(xiàn)的規(guī)律,讓學(xué)生進(jìn)一步體會(huì)計(jì)算器的作用:計(jì)算器還可以幫助我們探索規(guī)律。(設(shè)計(jì)意圖:設(shè)計(jì)不同層次的練習(xí),使學(xué)生體驗(yàn)計(jì)算器的有用性,提高學(xué)生解決問題的能力,培養(yǎng)學(xué)生辨證思維能力)四、最后進(jìn)行全課總結(jié)。整個(gè)活動(dòng),老師創(chuàng)設(shè)情境,啟發(fā)誘導(dǎo),設(shè)疑激趣,學(xué)生自主探索,動(dòng)手操作,積極思考,討論交流,給學(xué)生提供了充分的數(shù)學(xué)活動(dòng)機(jī)會(huì),充分發(fā)揮了學(xué)生的主體作用,使學(xué)生不僅掌握了知識(shí),發(fā)展了能力,同時(shí)又體驗(yàn)了數(shù)學(xué)問題的探索性與創(chuàng)造性,以及成功的喜悅,學(xué)生學(xué)得輕松,學(xué)得主動(dòng),學(xué)有創(chuàng)造,學(xué)有發(fā)展
新《課程標(biāo)準(zhǔn)》中指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué),是師生之間、生生之間交往互動(dòng)與共同發(fā)展的過程,數(shù)學(xué)教學(xué)應(yīng)從學(xué)生的實(shí)際出發(fā),創(chuàng)設(shè)有助于學(xué)生學(xué)習(xí)的問題情境,引導(dǎo)學(xué)生思考、探索、交流、獲得知識(shí),形成技能,發(fā)展思維,學(xué)會(huì)學(xué)習(xí),促使學(xué)生在教師指導(dǎo)下主動(dòng)地、富有個(gè)性地學(xué)習(xí)?!闭?jié)課以動(dòng)畫人物情境貫穿于始終,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,來完成本課的教學(xué)任務(wù)。上課伊始我播放一首學(xué)生熟悉的動(dòng)畫片《虹貓藍(lán)兔七俠傳》的片頭曲《人生不過一百年》,創(chuàng)設(shè)教學(xué)情境,貼近學(xué)生的生活,自然引出7個(gè)動(dòng)畫人物。不僅復(fù)習(xí)了1—5,而且順利引出新課。接下來的探究新知階段,繼續(xù)以為七劍合壁解決困難為情境線索,將新知自然呈現(xiàn)在學(xué)生的面前,使學(xué)生通過自主、合作探究的學(xué)習(xí)方式,完成6和7的數(shù)數(shù)、認(rèn)數(shù)、數(shù)序、比較大小、序數(shù)意義以及書寫的學(xué)習(xí)。
方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.