二項式定理形式上的特點(1)二項展開式有n+1項,而不是n項.(2)二項式系數都是C_n^k(k=0,1,2,…,n),它與二項展開式中某一項的系數不一定相等.(3)二項展開式中的二項式系數的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項起,次數由n次逐項減少1次直到0次,同時字母b按升冪排列,次數由0次逐項增加1次直到n次.1.判斷(正確的打“√”,錯誤的打“×”)(1)(a+b)n展開式中共有n項. ( )(2)在公式中,交換a,b的順序對各項沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項. ( )(4)(a-b)n與(a+b)n的二項式展開式的二項式系數相同. ( )[解析] (1)× 因為(a+b)n展開式中共有n+1項.(2)× 因為二項式的第k+1項Cknan-kbk和(b+a)n的展開式的第k+1項Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因為Cknan-kbk是(a+b)n展開式中的第k+1項.(4)√ 因為(a-b)n與(a+b)n的二項式展開式的二項式系數都是Crn.[答案] (1)× (2)× (3)× (4)√
2.某小組有20名射手,其中1,2,3,4級射手分別為2,6,9,3名.又若選1,2,3,4級射手參加比賽,則在比賽中射中目標的概率分別為0.85,0.64,0.45,0.32,今隨機選一人參加比賽,則該小組比賽中射中目標的概率為________. 【解析】設B表示“該小組比賽中射中目標”,Ai(i=1,2,3,4)表示“選i級射手參加比賽”,則P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.兩批相同的產品各有12件和10件,每批產品中各有1件廢品,現在先從第1批產品中任取1件放入第2批中,然后從第2批中任取1件,則取到廢品的概率為________. 【解析】設A表示“取到廢品”,B表示“從第1批中取到廢品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型號的產品,已知其中由一廠生產的占 30%, 二廠生產的占 50% , 三廠生產的占 20%, 又知這三個廠的產品次品率分別為2% , 1%, 1%,問從這批產品中任取一件是次品的概率是多少?
4.有8種不同的菜種,任選4種種在不同土質的4塊地里,有 種不同的種法. 解析:將4塊不同土質的地看作4個不同的位置,從8種不同的菜種中任選4種種在4塊不同土質的地里,則本題即為從8個不同元素中任選4個元素的排列問題,所以不同的種法共有A_8^4 =8×7×6×5=1 680(種).答案:1 6805.用1、2、3、4、5、6、7這7個數字組成沒有重復數字的四位數.(1)這些四位數中偶數有多少個?能被5整除的有多少個?(2)這些四位數中大于6 500的有多少個?解:(1)偶數的個位數只能是2、4、6,有A_3^1種排法,其他位上有A_6^3種排法,由分步乘法計數原理,知共有四位偶數A_3^1·A_6^3=360(個);能被5整除的數個位必須是5,故有A_6^3=120(個).(2)最高位上是7時大于6 500,有A_6^3種,最高位上是6時,百位上只能是7或5,故有2×A_5^2種.由分類加法計數原理知,這些四位數中大于6 500的共有A_6^3+2×A_5^2=160(個).
解析:因為減法和除法運算中交換兩個數的位置對計算結果有影響,所以屬于組合的有2個.答案:B2.若A_n^2=3C_(n"-" 1)^2,則n的值為( )A.4 B.5 C.6 D.7 解析:因為A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故選C.答案:C 3.若集合A={a1,a2,a3,a4,a5},則集合A的子集中含有4個元素的子集共有 個. 解析:滿足要求的子集中含有4個元素,由集合中元素的無序性,知其子集個數為C_5^4=5.答案:54.平面內有12個點,其中有4個點共線,此外再無任何3點共線,以這些點為頂點,可得多少個不同的三角形?解:(方法一)我們把從共線的4個點中取點的多少作為分類的標準:第1類,共線的4個點中有2個點作為三角形的頂點,共有C_4^2·C_8^1=48(個)不同的三角形;第2類,共線的4個點中有1個點作為三角形的頂點,共有C_4^1·C_8^2=112(個)不同的三角形;第3類,共線的4個點中沒有點作為三角形的頂點,共有C_8^3=56(個)不同的三角形.由分類加法計數原理,不同的三角形共有48+112+56=216(個).(方法二 間接法)C_12^3-C_4^3=220-4=216(個).
探究新知問題1:已知100件產品中有8件次品,現從中采用有放回方式隨機抽取4件.設抽取的4件產品中次品數為X,求隨機變量X的分布列.(1):采用有放回抽樣,隨機變量X服從二項分布嗎?采用有放回抽樣,則每次抽到次品的概率為0.08,且各次抽樣的結果相互獨立,此時X服從二項分布,即X~B(4,0.08).(2):如果采用不放回抽樣,抽取的4件產品中次品數X服從二項分布嗎?若不服從,那么X的分布列是什么?不服從,根據古典概型求X的分布列.解:從100件產品中任取4件有 C_100^4 種不同的取法,從100件產品中任取4件,次品數X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)種.一般地,假設一批產品共有N件,其中有M件次品.從N件產品中隨機抽取n件(不放回),用X表示抽取的n件產品中的次品數,則X的分布列為P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},則稱隨機變量X服從超幾何分布.
本節(jié)課選自《2019人教A版高中數學選擇性必修第三冊》,第六章《計數原理》,本節(jié)課主本節(jié)課主要學習二項式系數的性質
本節(jié)是在學習了二項式定理的基礎上,探究二項式系數的性質。由于二項式系數組成的數列就是一個離散型函數,引導學生從函數的角度研究二項式系數的性質,便于建立知識前后聯系,使學生運用利用幾何直觀、數形結合、特殊到一般的數學思想進行思考。
研究二項式系數這組特定的性質,對鞏固二項式定理,建立知識間的聯系,進一步認識組合數、進行組合數的計算和變形都有重要作用,對后續(xù)學習微分方程也具有重要地位。
課程目標 | 學科素養(yǎng) |
A.能記住二項式系數的性質,并能靈活運用性質解決相關問題. B.會用賦值法求二項展開式系數的和,注意區(qū)分項的系數和二項式系數. | 1.數學抽象:二項式系數的性質 2.邏輯推理:運用函數的觀點討論二項式系數的單調性 3.數學運算:運用二項式性質解決問題 4.幾何直觀:運用函數圖像討論二項式系數的性質 |
重點:二項式系數的性質(對稱性、增減性與最大值和各二項式系數的和);
難點:理解增減性與最大值時,根據n的奇偶性確定相應的分界點;
利用賦值法證明二項式系數的性質,數學思想方法的滲透.
多媒體
教學過程 | 教學設計意圖 核心素養(yǎng)目標 | |||||||||||||||||||||||||||||||||||||||||
一、溫故知新 1.二項式定理 (a+b)n=_________________________ (n∈N*). (1)這個公式所表示的規(guī)律叫做二項式定理. (2)展開式:等號右邊的多項式叫做(a+b)n的二項展開式,展開式中一共有______項. (3)二項式系數:各項的系數____ (k∈{0,1,2,…,n})叫做二項式系數. Can+Can-1b+Can-2b2+…+Can-kbk+…+Cbn n+1 ;C 2.二項展開式的通項公式 (a+b)n展開式的第______項叫做二項展開式的通項,記作Tk+1=______. k+1 ;Can-kbk 二、新知探究 探究1:計算展開式的二項式系數并填入下表 二項式系數: 通過計算、填表、你發(fā)現了什么規(guī)律?
將上表寫成如下形式: 思考:通過上表和上圖,能發(fā)現什么規(guī)律? 展開式的二項式系數 我們還可以從函數的角度分析它們。可看成是以為自變量的函數,其定義域是 我們還可以畫出它的圖像。 例如,當時, 函數()的圖像是7個離散的點,如圖所示。 1.對稱性 與首末兩端“等距離”的兩個二項式系數相等,即. 2.增減性與最大值 當k<時,隨k的增加而增大;由對稱性可知,當k>時,隨k的增加而減小.當n是偶數時,中間的一項取得最大值;當n是奇數時,中間的兩項相等,且同時取得最大值. 探究2.已知 = 3.各二項式系數的和 令x=1 得= 所以,的展開式的各二項式系數之和為 1. 在(a+b)8的展開式中,二項式系數最大的項為 ,在(a+b)9的展開式中,二項式系數最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數最大,該項為 因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數最大,這兩項分別為 答案:1.70a4b4 126a5b4與126a4b5 2. A=+…與B=+…的大小關系是( ) A.A>B B.A=B C.A不確定 解析:∵(1+1)n=+…+ (1-1)n=-…+(-1)n ∴+…=+…=2n-1,即A=B. 答案:B 三、典例解析 例3.求證:在的展開式中,奇數項的二項式系數的和等于偶數項的二項式系數的和. 證明:在展開式 =中, 令a=1,b=-1,得 即 因此 即在的展開式中,奇數項的二項式系數的和等于偶數項的二項式系數的和. 二項展開式中系數和的求法 (1)對形如(ax+b)n,(ax2+bx+c)m(a,b,c∈R,m,n∈N*)的式子求其展開式的各項系數之和,常用賦值法,只需令x=1即可;對(ax+by)n(a,b∈R,n∈N*)的式子求其展開式各項系數之和,只需令x=y=1即可. (2)一般地,若f(x)=a0+a1x+a2x2+…+anxn,則f(x)展開式中各項系數之和為f(1), 奇數項系數之和為a0+a2+a4+…=, 偶數項系數之和為a1+a3+a5+…=. 跟蹤訓練1. 在(2x-3y)9的展開式中,求: (1)二項式系數之和; (2)各項系數之和; (3)所有奇數項系數之和. 解:設(2x-3y)9=a0x9+a1x8y+a2x7y2+…+a9y9. (1)二項式系數之和為+…+=29=512. (2)各項系數之和為a0+a1+a2+…+a9, 令x=1,y=1, 所以a0+a1+a2+…+a9=(2-3)9=-1. (3)令x=1,y=-1,可得 a0-a1+a2-…-a9=59, 又a0+a1+a2+…+a9=-1, 將兩式相加可得a0+a2+a4+a6+a8==976 562, 即所有奇數項系數之和為976 562. 例4.已知(1+2x)n的展開式中第6項與第7項的系數相等,求展開式中二項式系數最大的項和 系數最大的項. 解:T6=(2x)5,T7=(2x)6,依題意有 25=26,解得n=8. ∴在(1+2x)8的展開式中,二項式系數最大的項為 T5=(2x)4=1 120x4. 設第k+1項的系數最大,則有 解得5≤k≤6. ∴k=5或k=6(∵k∈{0,1,2,…,8}). ∴系數最大的項為T6=1 792x5,T7=1 792x6. 求二項展開式中系數的最值的方法 (1)若二項展開式的系數的絕對值與對應二項式系數相等,可轉化為確定二項式系數的最值來解決. (2)若二項展開式的系數為f(k)= 如求(a+bx)n(a,b∈R)的展開式中系數最大的項,一般是采用待定系數法,設其展開式的各項系數分別為A1,A2,…,An+1,且第k+1項系數 最大,應解出k,即得系數最大的項. 跟蹤訓練2.已知的展開式中,只有第6項的二項式系數最大. (1)求該展開式中所有有理項的個數; (2)求該展開式中系數最大的項. |
通過回顧二項式定理,從數學知識內部提出問題,引導學生觀察、發(fā)現二項式系數的性質。發(fā)展學生邏輯推理、數學運算、數學抽象和數學建模的核心素養(yǎng)。
讓學生親身經歷了從特殊到一般,獲得二項式性質的過程。發(fā)展學生邏輯推理,直觀想象、數學抽象和數學運算的核心素養(yǎng)。
通過典例解析,讓學生體會利用二項式系數的性質,感受數學模型在數學應用中的價值。發(fā)展學生邏輯推理,直觀想象、數學抽象和數學運算的核心素養(yǎng)。
| |||||||||||||||||||||||||||||||||||||||||
三、達標檢測 1.(1-x)13的展開式中系數最小的項為( ) A.第6項 B.第7項 C.第8項 D.第9項 解析:展開式中共有14項,中間兩項(第7,8項)的二項式系數最大.故系數最小的項為第8項,系數最大的項為第7項. 答案:C 2.已知+2+22+…+2n=729,則的值等于( ) A.64 B.32 C.63 D.31 解析:由已知(1+2)n=3n=729,解得n=6. 則=32. 答案:B 3.已知(1+x)n的展開式中第4項與第8項的二項式系數相等,則奇數項的二項式系數和為( ) 解析:因為(1+x)n的展開式中第4項與第8項的二項式系數相等, 所以,解得n=10, 所以二項式(1+x)10中奇數項的二項式系數和為210=29. 答案:D 4.已知+2xn的展開式中前三項的二項式系數的和等于37,則展開式中二項式系數最大的項的系數為 . 解析:由=37,得1+n+n(n-1)=37, 解得n=8(負值舍去), 則第5項的二項式系數最大, T5=(2x)4=x4,該項的系數為 答案: 5.已知+2xn,若展開式中第5項、第6項與第7項的二項式系數成等差數列,求展開式中二項式系數最大的項的系數. |
轉載請注明出處!本文地址:
http://17025calibrations.com/worddetails_99132725.html1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
一是要把好正確導向。嚴格落實主體責任,逐條逐項細化任務,層層傳導壓力。要抓實思想引領,把理論學習貫穿始終,全身心投入主題教育當中;把理論學習、調查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學思用貫通、知信行統(tǒng)一,努力在以學鑄魂、以學增智、以學正風、以學促干方面取得實實在在的成效。更加深刻領會到******主義思想的科學體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領,要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質量發(fā)展作出貢獻。二是要加強應急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預警和應對處置能力,提高發(fā)現力、研判力、處置力,起到穩(wěn)定和引導作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質量發(fā)展標桿礦井”、建設“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應對。加強職工群眾熱點問題的輿論引導,做好輿情的收集、分析和研判,把握時、度、效,重視網上和網下輿情應對。
二是深耕意識形態(tài)。加強意識形態(tài)、網絡輿論陣地建設和管理,把握重大時間節(jié)點,科學分析研判意識形態(tài)領域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設,鍛造堅強有力的基層黨組織。一是提高基層黨組織建設力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學習活動,以實際行動推動黨建工作和經營發(fā)展目標同向、部署同步、工作同力。三是加強高素質專業(yè)化黨員隊伍管理。配齊配強支部黨務工作者,把黨務工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據市委促進經濟轉型的總要求,聚焦“四個經濟”和“雙中心”的建設,深入了解基層科技工作、學術交流、組織建設等方面的實際情況,全面了解群眾的真實需求,解決相關問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關鍵工具和展示平臺。目前,“民聲熱線”已回應了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質性的變化和效果。接下來,我局將繼續(xù)深入學習主題教育的精神,借鑒其他單位的優(yōu)秀經驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現新的風貌和活力。
今年3月,市政府出臺《關于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現2000噸級舶全天候暢行”。作為“水運XX”建設首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設計方案。牢牢把握高質量發(fā)展這個首要任務,在學思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質量發(fā)展持續(xù)走在前列。以學促干建新功,關鍵在推動高質量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調立足新發(fā)展階段、貫徹新發(fā)展理念、構建新發(fā)展格局,推動高質量發(fā)展,提出了新發(fā)展階段我國經濟高質量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調和方法論等,深刻體現了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務管理標準化模式,持續(xù)在公共文化服務精準化上探索創(chuàng)新,圍繞群眾需求,不斷調整公共文化服務內容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務按時保質保量完成。服務“雙減”政策,持續(xù)做好校外培訓機構審批工作,結合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務教育階段學生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結合文旅產業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產品全域布局、旅游要素全域配置、旅游設施全域優(yōu)化、旅游產業(yè)全域覆蓋。
1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。
二是全力推進在談項目落地。認真落實“首席服務官”責任制,切實做好上海中道易新材料有機硅復配硅油項目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項目、天勤生物生物實驗基地項目、愷德集團文旅康養(yǎng)產業(yè)項目、三一重能風力發(fā)電項目、中國供銷集團冷鏈物流項目跟蹤對接,協(xié)調解決項目落戶過程中存在的困難和問題,力爭早日實現成果轉化。三是強化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調度及業(yè)務指導,貫徹落實項目建設“6421”時限及“每月通報、季度排名、半年分析、年終獎勵”相關要求,通過“比實績、曬單子、亮數據、拼項目”,進一步營造“比學趕超”濃厚氛圍,掀起招商引資和項目建設新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務。
(二)堅持問題導向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務質量上下功夫,積極學習借鑒其他部門及xx關于“四零”承諾服務創(chuàng)建工作的先進經驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應新時代人民群眾對政務服務的新需求。(三)深化內外宣傳,樹立良好形象。要深入挖掘并及時總結作風整頓“四零”承諾服務創(chuàng)建工作中形成的典型經驗做法,進一步強化內部宣傳與工作交流,推動全市創(chuàng)建工作質效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。
(五)服務群眾提效能方面。一是政府采購服務提檔升級。建成“全區(qū)一張網”,各類采購主體所有業(yè)務實現“一網通辦,提升辦事效率;全面實現遠程開標和不見面開標,降低供應商成本;要求400萬元以上工程采購項目預留采購份額提高至采購比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購榮獲”中國政府采購獎“,并以全國第一的成績獲得數字政府采購耕耘獎、新聞宣傳獎,以各省中第一的成績獲得年度創(chuàng)新獎。二是財政電子票據便民利民。全區(qū)財政電子票據開具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領域,全區(qū)241家二級以上公立醫(yī)療機構均已全部上線醫(yī)療收費電子票據,大大解決了群眾看病排隊等待時間長、繳費取票不方便的問題,讓患者”省心、省時、省力“。
一、活動開展情況及成效按照省委、市委對“大學習、大討論、大調研”活動的部署要求,縣委立即行動,于8月20日組織召開常委會會議,專題傳達學習省委X在讀書班上的講話精神。5月2日,縣委召開“大學習、大討論、大調研”活動推進會,及時對活動開展的相關要求、任務進行再安排再部署,會后制定并下發(fā)了活動實施方案、重點課題調研方案、宣傳報道方案等系列文件,有效指導活動開展。5月17日、9月1日,縣委再次召開常委會會議,專題聽取“大學習、大討論、大調研”活動開展情況匯報,研究部署下階段工作。9月13日,召開全縣“大學習大討論大調研”活動工作推進座談會,深入貫徹全省、全市“大學習大討論大調研”活動工作推進座談會精神,總結交流活動經驗,對下一階段活動開展進行安排部署。“大學習、大討論、大調研”活動的有序開展,為砥礪前行、底部崛起的X注入了強大的精神動力。
1.市政基礎設施項目5項,總建設里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學院配套道路項目在黃麓鎮(zhèn)完成圍墻建設后即可進場施工。2.公益性建設項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學擴建工程已完成施工、監(jiān)理招標掛網,2月上旬完成全部招標工作;合肥職業(yè)技術學院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結合醫(yī)院)新建工程正在按照既定計劃推進,預計4月中下旬掛網招標。