解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結:由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結合左視圖驗證該物體的左側面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
三、典型例題,應用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結果,每種結果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍)(紅2,藍)(藍,紅1)(藍,紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉盤做“配紫色”游戲,每個轉盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設計兩個轉盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結,回顧新知1. 利用樹狀圖和列表法求概率時應注意什么?2. 你還有哪些收獲和疑惑?
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關系.通過具體活動,積累學生的觀察、想象物體投影的經(jīng)驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.
故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據(jù)線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數(shù)成比例,則應滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.
●教學目標(一)教學知識點1.相似三角形的周長比,面積比與相似比的關系.2. 相似三角形的周長比,面積比在實際中的應用.(二)能 力訓練要求1.經(jīng)歷探索相似三角形的 性質的過程,培養(yǎng)學生的探索能力.2.利用相似三角形的性質解決實際問題訓練學生的運用能力.(三)情 感與價值觀要求1.學 生通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體會知識遷移、溫故知新的好處.2.運用相似多邊形的周長比,面積比解決實際問題,增強學生對知識的應用意識.●教學重點1.相似三角形的周長比、面積比與相似比關系的推導.2.運用相似三角形的比例關系解決實際問題.●教學難點相似三角形周長比、面積比與相似比的關系的推導及運用.●教學方法引導啟發(fā)式通過溫故知新,知識遷移,引導學生發(fā)現(xiàn)新的結論,通過比較、分析,應用獲得的知識達到理解并掌握的 目的.●教具準備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
三:鞏固新知1、判斷對錯:(1)如果一個菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個角是直角的四邊形是正方形. ( )2、已知:點E、F、G、H分別是正方形ABCD四條邊上的中點,并且E、F、G、H分別是AB、BC、CD、AD的中點.求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點.3.本節(jié)的收獲與疑惑.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學生自己閱讀課本內容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
內容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復習公理:兩點之間線段最短;情景2的創(chuàng)設引入新課,激發(fā)學生探究熱情.效果:從學生熟悉的生活場景引入,提出問題,學生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎.第二環(huán)節(jié):合作探究內容:學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線.讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法.
(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說明)如:2、四條線段a,b ,c,d成比例,有順序關系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實際距離AB= 250m,畫在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習1、已知某一時刻物體高度與其影長的比值為2:7,某 天同一時刻測得一棟樓的影長為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長。
解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經(jīng)歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.
當Δ=l2-4mn<0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的一個點P;當Δ=l2-4mn=0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的兩個點P;當Δ=l2-4mn>0時,存在以P、A、B三點為頂點的三角形與以P、C、D三點為頂點的三角形相似的三個點P.方法總結:由于相似情況不明確,因此要分兩種情況討論,注意要找準對應邊.三、板書設計相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學生的自主探究為主,鼓勵學生獨立思考,多角度分析解決問題,總結常見的輔助線添加方法,使學生的推理能力和幾何思維都獲得提高,培養(yǎng)學生的探索精神和合作意識.
一、說教材小數(shù)乘以小數(shù)的原有基礎是整數(shù)乘整數(shù)、小數(shù)乘整數(shù)。它為小數(shù)除法、小數(shù)四則混合運算和分數(shù)小數(shù)四則混合運算學習奠定基礎,占據(jù)著重要的地位。小數(shù)乘小數(shù)是五年級上冊第一單元小數(shù)乘法的難點和關鍵,一共涉及三個知識點,1.確定積小數(shù)點位置;2.積位數(shù)不夠時添“0”補足;3.小數(shù)連乘的探究。第一課時是根據(jù)整數(shù)乘法算出積后來確定積的小數(shù)點位置,不涉及積位數(shù)不夠時用0來補足的知識。本課時的關鍵在于理解算理,歸納算法。根據(jù)以上的分析及新課程標準的要求,考慮到學生已有的認知結構,對整數(shù)乘法算理的掌握,能對小數(shù)乘整數(shù)積小數(shù)點的定位,制定以下的教學目標:知識與能力:共同探討,理解并掌握小數(shù)乘小數(shù)的算理及算法;過程與方法:在探索過程中,培養(yǎng)學生觀察、比較、歸納與概括的能力和用數(shù)學語言進行表述交流的能力,滲透轉化思想;
(二)組織學生探究知識并形成新的知識。我從學生的生活體驗入手,運用案例等形式創(chuàng)設情境呈現(xiàn)問題,使學生在自主探索、合作交流的過程中,發(fā)現(xiàn)問題、分析問題、解決問題,在問題的分析與解決中主動構建知識。主要通過幾幅漫畫讓學生思考其中的哲學道理,開始接觸哲學。漫畫一:種瓜得瓜,種豆得豆,種雞蛋得??漫畫二:甲:下雨好極啦!乙:下雨糟透了!漫畫三:——狂妄之徒,你竟然壞了祖上規(guī)矩!在引導學生思考、體驗問題的過程中,可以使學生逐步學會分析、解決問題的方法。這樣做既有利于發(fā)展學生的理解、分析、概括、想象等創(chuàng)新思維能力,又有利于學生表達、動手、協(xié)作等實踐能力的提高,促進學生全面發(fā)展,力求實現(xiàn)教學過程與教學結果并重,知識與能力并重的目標。
(活動一)祝福熱線學生自由分角色扮演其親人、朋友等,讓他們之間相互贈送祝福。整個過程以學生為主體,在這種動態(tài)生成的課堂中,學生能夠全面參與,建構屬于自己的知識能力、社交能力,有利于他們形成內化的道德品質。群體互動:(活動二)特別行動采用小組合作學習的方法,模擬過年的活動,如:“幫媽媽布置房間”、“訪親拜友”、“采購年貨計劃”、“春節(jié)慰問活動”、“有趣的游藝活動”等,讓他們分組討論,確定主題,再進行準備,制定計劃或排練小短劇。這一設計重在培養(yǎng)學生的合作精神和創(chuàng)新意識。4、培養(yǎng)能力,拓展延伸。借助繪本故事〈〈團圓〉〉,講述了農村兒童的新年故事,其中暗含了很多傳統(tǒng)習俗。繪本中濃濃的團聚親情和淡淡的離別思緒。給學生帶來了獨特的春節(jié)感受。在作業(yè)設計上,為了讓學生化知為能,遷移應用。讓學生回家了解過年的風俗習慣,對親朋好友相互贈送祝福,培養(yǎng)他們辨別是非的能力,提高對社會現(xiàn)象的辨別,分析能力。
環(huán)節(jié)2:不一樣的冬天情境體會由此拋出問題“為什么冬天會發(fā)生這樣的現(xiàn)象”?因為南北方溫差大的原因,環(huán)境形成鮮明的對比,讓學生體會到偉大祖國的地大物博,從而激發(fā)學生的愛國熱情。(板書:熱愛。音樂伴奏,南北方圖片出示欣賞)。相應的動植物、人們的衣著、活動以及心態(tài)都是有很大差異。兒歌總結,體現(xiàn)出冬天的奇妙。(板書:奇妙)環(huán)節(jié)3:冬天里的游戲小組比賽,游戲激趣1.說說“我”在冬天最喜歡玩的游戲是......因為......這一話題可以讓學生對冬天產(chǎn)生更強烈的喜愛之情。上周四的第一場大雪讓大家期盼已久,學生的第一反應是雪景美,可以打雪仗、堆雪人、打陀螺、滑雪、貼窗花、吃冰糖葫蘆等。(板書:美好)2.冬天玩耍需要注意的事項,判斷對錯。在交流中,教師適時點撥。讓學生意識到游戲雖好玩,但要注意方式方法和安全。九、【說板書設計】在板書設計中,我根據(jù)學生的特點,采用了簡潔的板書形式。首先在導入的教學環(huán)節(jié)中板書課題,在第二環(huán)節(jié)以不同地方冬天對比形式板書奇妙、熱愛,在第三環(huán)節(jié)通過玩耍,板書美好。
4. 小結:校園的每一個地方都那么美麗,我們要愛護,而且要安全文明地去使用校園設施,我們才會生活得更開心。教室的每一個地方也是我們都要愛護,圖書角、衛(wèi)生角、生物角等區(qū)域都要好好去愛護,因為教室就是我們美麗溫馨的家?!驹O計意圖】討論學生最喜歡的地方目的在于讓學生更多地增強對校園環(huán)境的喜愛,增強孩子作為小學生的自豪感。以校園不文明想象為例,繼續(xù)交流,進一步引導學生學會愛護校園環(huán)境,安全使用校園設施。使他們明白只有安全、文明、有序地活動,才能讓我們獲得更多的快樂。(四)活動四:讀一讀愛護校園拍手歌1.導語:經(jīng)過剛剛的討論學習,我們懂得了如何去愛護我們的校園以及教室,也懂得了如何去安全文明使用我們的校園設施。我們要學會去愛護校園。下面,我們一起來誦讀愛護校園拍手歌2.任務一:誦讀拍手歌愛護校園拍手歌愛護花草,保護綠化文明有序,安全玩耍垃圾分類,不隨手丟文明有禮,遵守秩序3.任務二:出示愛護校園環(huán)境圖片,讓學生觀察圖片說出文明之處。4.小結:誦讀拍手歌,看了照片,同學們心中應該都知道了如何愛護我們的校園了。
四、教學過程(一)導入新課1.播放2008年北京奧運會開幕式視頻,并讓學生說說感受。師:同學們,這就是集體的力量,這是一個由2008個人表演的壯觀節(jié)目。其實啊,我們的班級也是一個集體,我們每一個人都是這個班集體中的一份子,但是要想做到整齊劃一,離不開我們班級的每一個人的努力,這就需要我們服從指揮,聽從號令。其實啊,在我們的校園里,也有一個神秘的“指揮家”,這個“指揮家”特別有威力,連老師都要聽它的指揮。這么神奇的指揮家,大家猜猜是誰呢?(生預設:喇叭)(二)新授1.師:在我們的校園里有一些專屬于我們特有的聲音,今天我們這節(jié)課就來認識一下《校園里的號令》(板書課題:校園里的號令)2.師:我這里有一段視頻,視頻里的同學是怎么做的呢?(生預設:我看到大家做得都很好,我們要熱愛祖國,尊敬國旗國歌,大家聽到國歌都立刻站好,看向國旗。)