提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

統(tǒng)編版三年級語文上第25課灰雀教學設計教案

  • 拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比用方程研究橢圓雙曲線幾何性質的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質,如何研究這些性質?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學我國著名數(shù)學家吳文俊先生在《數(shù)學教育現(xiàn)代化問題》中指出:“數(shù)學研究數(shù)量關系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比橢圓幾何性質的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質,如何研究這些性質1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 拋物線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    本節(jié)課選自《2019人教A版高中數(shù)學選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學習拋物線及其標準方程在經歷了橢圓和雙曲線的學習后再學習拋物線,是在學生原有認知的基礎上從幾何與代數(shù)兩 個角度去認識拋物線.教材在拋物線的定義這個內容的安排上是:先從直觀上認識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應用.這樣的安排不僅體現(xiàn)出《課程標準》中要求通過豐富的實例展開教學的理念,而且符合學生從具體到抽象的認知規(guī)律,有利于學生對概念的學習和理解.坐標法的教學貫穿了整個“圓錐曲線方程”一章,是學生應重點掌握的基本數(shù)學方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學

  • 雙曲線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經過右焦點F2,所以,直線AB的方程為

  • 雙曲線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線及其標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    ∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經過點(3,√10);(3)a=b,經過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.

  • 橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質.解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

  • 橢圓的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經過旋轉橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質求標準方程的思路1.利用橢圓的幾何性質求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.

  • 用空間向量研究距離、夾角問題(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究距離、夾角問題(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉化為空間某一個平面內點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),

  • 用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們取一定點O作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 二年級數(shù)學下冊第三單元數(shù)圖形的運動教案

    二年級數(shù)學下冊第三單元數(shù)圖形的運動教案

    一、游戲活動激趣,認識對稱物體1、游戲“猜一猜”:課件依次出示“剪刀、掃帚、飛機、梳子”的一部分,分男、女生猜。2、認識對稱物體:1)師質疑:為什么女生猜得又快又準呢?2)小結:像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對稱物體。(板書:對稱)二、猜想驗證新知,認識軸對稱圖形(一)初步感知對稱圖形1、將“剪刀、飛機、扇子”等對稱物體抽象出平面圖形,讓學生觀察,這些平面圖形還是不是對稱的。2、師小結:像這樣的圖形,叫做對稱圖形。(板書:圖形)(二)猜想驗證對稱圖形1、猜一猜:出示“梯形、平行四邊形、圓形、燕尾箭頭”等平面圖形,讓學生觀察。師:這些平面圖形是不是對稱圖形?怎樣證明它們是不是對稱圖形?

  • 語文聽課心得體會

    語文聽課心得體會

    在兩節(jié)優(yōu)質課中,教師放手讓學生自主探究解決問題。每一節(jié)課,每一位老師都很有耐性的對學生有效的引導,充分體現(xiàn)“教師以學生為主體,學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者,引導者和合作者”的教學理念。老師們的語言精煉、豐富,對學生鼓勵性的語言十分值的我們學習、在思想教育方面,這些教師都處理的比較好,自然真摯的情感流露感染了學生和聽課的每一位教師及家長。看到任欣和初艷麗兩位語文老師氣定神閑,信手拈來,不時激起一個個教學的浪花,不僅令學生陶醉、癡迷,更讓我連聲贊嘆。從中我更深刻地體會到了學習的重要性與緊迫感。

  • 2022重慶中考語文A卷答案

    2022重慶中考語文A卷答案

    作者通過舉例,更具體地說明了“自下而上找結構”的方法;/作者分步驟,更為清晰地講解了如何從龐雜信息中找到結構;/作者通過高度概括(提煉觀點),使讀者更為快速地了解從龐雜信息中找到結構的方法。

  • 2022年重慶市中考語文A卷

    2022年重慶市中考語文A卷

    這一天,陽光明亮,大鳥忽然覺得它的雙腳可以抬起了。它十分激動地對冰山說:“我能飛了,我能飛了,我可以回家啦!”它扇動翅膀,飛了起來??墒牵篪B很快掉進了海水里。它好幾天沒吃東西,已經沒有一絲力氣。

  • LOGO、商標委托設計合同(范本)

    LOGO、商標委托設計合同(范本)

    根據(jù)《合同法》《著作權法》及相關法律、法規(guī)的規(guī)定,甲、乙雙方在平等、自愿的基礎之上,就甲方委托乙方設計公司LOGO和商標的相關事宜簽訂本合同,以資共同遵守。一、委托事項  甲方委托乙方設計公司的 LOGO和商標,乙方應提供不少于3套(含3套)設計方案供甲方選擇。二、設計周期  設計周期分為二個階段: 第一階段:      個工作日(自本合同生效之日起算),完成設計初稿并提交甲方校稿。第二階段:      個工作日(自甲方將修改意見反饋給乙方之日起算),完成設計修改并提交甲方驗收。  若因乙方原因導致未能按上述約定期限交付的,每逾期一日乙方應按總設計費的萬分之二向甲方支付違約金,甲方有權直接從設計費用里面直接扣除;逾期超過      個工作日,甲方有權單方終止本合同并要求乙方返還全部已收款項。     

  • 室內裝修空間效果圖設計合同

    室內裝修空間效果圖設計合同

    根據(jù)《中華人民共和國廣告法》,《中華人民共和國合同法》及國家有關法律、法規(guī)的規(guī)定,甲、乙雙方在平等、自愿、等價有償、公平、誠實信用的基礎上,經友好協(xié)商,就甲方委托乙方設計、制作 效果圖事宜,達成一致意見,特簽訂本合同,以資信守。第一條 委托事項(具體見 )第二條 合同總價款及付款方式1、本合同設計費單價為人民幣 元(大寫: ),輸出打樣等其他費用為人民幣 元(大寫: ),總價款為人民幣 元(大寫: )。2、本合同簽訂后 個工作日內,甲方應向乙方支付合同總價款的 %,即人民幣(大寫): 作為預付款。3、乙方交付設計成果經甲方驗收達到合同約定的設計要求和驗收標準后 個工作日內,甲方向乙方支付合同結算余款。第三條 設計要求及驗收標準:詳見附件 第四條 雙方義務1、甲方負責在約定的時間內提供以下資料,并對其所提供的資料的正確性負責:2、甲方應按合同約定向乙方支付本合同價款。3、乙方應在 年 月 日前完成本合同約定的委托事項 。4、乙方設計的效果圖應符合相關法律法規(guī)的規(guī)定,并不得侵犯他人的著作權和其它合法權益。第五條 雙方責任1、甲方須及時按約定方式支付乙方的服務費。2、甲方要求乙方在規(guī)定時間內完成工作,乙方若無故耽誤完成時間或無法完成則甲方有權從服務費中扣除損失費。如果因乙方的耽誤造成甲方損失的,甲方有權單方面停止服務。3、乙方設計錯誤或設計成果未達到本合同約定的設計要求及驗收標準的,乙方應負責按甲方要求采取補救措施;造成甲方損失的,乙方應免收受損失部分的設計費,并根據(jù)損失程度向甲方支付賠償金。

  • 部編版小學語文六年級下冊第20課《真理誕生于一百個問號之后》優(yōu)秀教案范文

    部編版小學語文六年級下冊第20課《真理誕生于一百個問號之后》優(yōu)秀教案范文

    1、認真讀課文,邊讀邊想課文每個自然段都寫了什么,給課文劃分段落。2、學生交流段落劃分,說明分段理由。3、教師對照板書進行小結:這篇課文思路特別明晰,作者開門見山提出自己的觀點,明確指出“真理誕生于一百個問號之后”這句話本身就是“真理”,然后概括地指出在千百年來的科學技術發(fā)展史上,那些定理、定律、學說都是在發(fā)現(xiàn)者、創(chuàng)造者解答了“一百個問號之后”才獲得的,由此引出科學發(fā)展史上的三個有代表性的確鑿事例,之后對三個典型事例作結,強調這三個事例“都是很平常的事情”,卻從中發(fā)現(xiàn)了真理,最后指出科學發(fā)現(xiàn)的“偶然機遇”只能給有準備的人,而不會給任何一個懶漢。

  • 部編版小學語文二年級下冊第12課寓言兩則之《揠苗助長》優(yōu)秀教案范文

    部編版小學語文二年級下冊第12課寓言兩則之《揠苗助長》優(yōu)秀教案范文

    談話導入  1、咱班的小朋友今天可真精神,孩子們,喜歡聽故事嗎?(喜歡)今天陳老師給大家?guī)砹艘粋€好聽的故事,故事的名字叫“揠苗助長”。來,伸出小手和老師一起書寫課題,“揠”是提手旁,“助”是“幫助”的助?! ?“揠苗助長”講了一個什么故事呢?我們一起來聽聽吧。(放課件)  3、故事聽完了,那你知道揠是什么意思嗎?(拔),噢!所以也有好多人把揠苗助長叫(拔苗助長)。這個農夫想讓禾苗快點長高,就(拔禾苗)幫助禾苗生長??山Y果禾苗卻枯死了。想不想自己讀讀這個故事?(想)。

上一頁123...646566676869707172737475下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!