761年8月,成都平原風雨成災。草堂被吹破了,草堂前的一棵200年的楠樹也被拔倒了。〖JP3就在詩人政治上受到冷遇,又加風雨成災的情況下,杜甫寫了《茅屋為秋風所破歌》。〖JP《賣炭翁》:本詩選自《白居易集》卷四(中華書局1979年版)。本詩是白居易《新樂府》組詩中的第三十二首,自注云:“《賣炭翁》,苦宮市也?!卑拙右讓懽鳌缎聵犯肥窃谠停ㄌ茟椬谀晏?,806—820)初年,這正是宮市為害最深的時候。他對宮市十分的了解,又對人民有深切的同情,所以才能寫出這首感人至深的《賣炭翁》來?;蕦m所需的物品,本來由官吏采買。中唐時期,宦官專權,橫行無忌,連這種采購權也抓了過去,常有數(shù)十百人分布在長安東西兩市及熱鬧街坊,以低價強購貨物,甚至不給分文,還勒索“進奉”的“門戶錢”及“腳價錢”。名為“宮市”,實際是一種公開的掠奪。詩人有感于此,寫下本詩。
【再讀課文,梳理結構】1. 文章標題為“北冥有魚”,后來怎么又寫鳥了?鳥是由魚變化而來的。鯤的體形有幾千里,變成鳥后,鳥的脊背不知有幾千里長。說明莊子想象力豐富。2. 鳥為什么要遷徙到南冥?南冥是天人的大池,是鳥心目中的理想境地,是要追求一種精神的自由。3. 鯤鵬由北海飛到南海,需要借助什么條件?“海運則將徙于南冥”“摶扶搖而上者九萬里,去以六月息者也”4. 句子賞析:“鵬之徙于南冥也,水擊三千里,摶扶搖而上者九萬里?!痹~句運用豐富的想象,奇特的夸張,描寫了鯤鵬振翼拍水,盤旋飛向九萬里高空的形象,這一形象能激發(fā)人的豪情壯志,具有強烈的藝術感染力?!皳簟薄皳弧钡茸謧魃?、生動,讓人產(chǎn)生豐富的想象和聯(lián)想。
明確:(1)作者在前三段簡要交代了故事發(fā)生的背景環(huán)境——咸亨酒店。咸亨酒店是一個人群集中之地,反映著形形色色的人,但重要的是長衫和短衣的區(qū)別,昭示著這是一個階級分層的封建社會。而“掌柜是一副兇臉孔,主顧也沒有好聲氣”也凸顯出這個社會的薄涼。(2)“笑”是貫穿文中始末的一個關鍵詞,首先從“只有孔乙己到店,才可以笑幾聲”的基調(diào)開始,孔乙己便已然注定是眾人的笑料;果然,辯別盜竊,“引得眾人都哄笑起來”;質(zhì)疑他是讀書人,“眾人也都哄笑起來”;給孩子們吃茴香豆,“孩子都在笑聲里走散了”;他最后一次出現(xiàn),也是“在旁人的說笑聲中,坐著用這手慢慢走去了”。然而,這個“笑”字在文中只是“輕松活潑”的假象,它是森然的,沉重的?!靶Α崩锩姹憩F(xiàn)的是人與人之間的冷漠,是世態(tài)人情的薄涼。而也是從這“笑”中,我們感受到了作者寫在其中的怒,對社會于苦人的薄涼的控訴。
(5)這首詩表達了什么感情?請簡要分析。明確:這首詩飽含沉痛悲涼,既嘆國運又嘆自身,把家國之恨、艱危困厄渲染到極致。最后一句由悲而壯、由郁而揚,慷慨激昂、擲地有聲,以磅礴的氣勢、高亢的語調(diào)顯示了詩人的民族氣節(jié)和舍生取義的生死觀。目標導學三:《山坡羊·潼關懷古》1.了解作者和創(chuàng)作背景及詩歌體裁張養(yǎng)浩(1270—1329),字希孟,號云莊,山東濟南人,元代文學家。他詩、文兼擅,而以散曲著稱。張養(yǎng)浩為官清廉,愛民如子。天歷二年(1329年),因關中旱災,被任命為陜西行臺中丞以賑災民?!渡狡卵?#183;潼關懷古》便寫于應召往關中的途中。散曲:到了元代,出現(xiàn)新興的體裁——曲。曲大致分為兩種,一是劇曲,一是散曲。散曲沒有動作、說白,包括套數(shù)和小令兩種基本形式。套數(shù)由若干曲子組成,小令以一支曲子為獨立單位。《天凈沙》《山坡羊》都是有標題的小令。本篇“山坡羊”是小令的曲牌名,“潼關懷古”是標題。
5.請你根據(jù)前面的探究,總結本文的論證思路。明確:作者首先通過論述作者、讀者以及文字之間的聯(lián)系來明確讀者欣賞文藝作品的本質(zhì),即“接觸作者的所見所感”,然后以賞析王維詩句為例,從正反兩個角度論述了驅遣想象力的重要作用。目標導學三:賞析語言,領悟內(nèi)涵文中有許多句子,都有十分深刻的文藝觀,它們或有十分深刻的內(nèi)蘊,或有寫作值得借鑒的實用價值,請閱讀下面幾句,談談你對它們的理解。(1)文藝的創(chuàng)作決不是隨便取許多文字來集合在一起。明確:任何一篇文藝作品,都是文字集合起來的,但這是一種有著內(nèi)在邏輯順序的結合,具有文本表現(xiàn)中的一般技法,既表現(xiàn)了內(nèi)容也傳遞著作者的思想感情。因此,這樣的文章絕不可能隨意拼湊,須由作者有意識、有目的、有邏輯地創(chuàng)造,而在完成時又符合自然的特點。(2)作者著手創(chuàng)作,必然對于人生先有所見,先有所感。
目標導學三:深入理解,體會“無言之美”1.請你結合作者的任意一則論據(jù),說說你對“無言之美”的感受。明確:正如作者探討文學作品時的數(shù)個例子,詩歌本是極其簡短的幾句話,但是其包含的意境卻是極其寬廣的。如“大漠孤煙直,長河落日圓”,言語只有短短的十個字,但是讀來卻似看見大漠的寬闊宏偉之景,悲涼之意,予人以悲涼雄壯的美感。然而,作者要描寫出這寬闊宏偉之景,悲涼之意,恐怕書萬言都難以說盡,這不是意味著作者將它們寓于無言之中了嗎?這就是古典文學中深蘊的無言之美。2.拓展延伸:品味下面一段話,說說你品味到“無言之美”的例子。拿美術來表現(xiàn)思想和情感,與其盡量流露,不如稍有含蓄;與其吐肚子把一切都說出來,不如留一大部分讓欣賞者自己去領會。因為在欣賞者的頭腦里所產(chǎn)生的印象和美感,有含蓄比較盡量流露的還要更加深刻。
一、導入新課唐太宗說:“以銅為鏡,可以正衣冠;以古為鏡,可以知興替;以人為鏡,可以明得失?!睔v代君主若想成就一番霸業(yè),身邊沒有幾位敢進諫言的大臣是不成的;而勸諫能否奏效,一要看作君王的是否賢明,二要看諫者是否注意了進諫的藝術,使“良藥”既“爽于口”,又“利于病”。戰(zhàn)國時齊威王非常幸運地遇到了這樣一位賢臣——鄒忌。而這位以雄辯著稱的謀臣的諷諫之法更是令人叫絕。今天,我們就來欣賞選自《戰(zhàn)國策》的歷史散文《鄒忌諷齊王納諫》。二、教學新課目標導學一:認識作品,了解相關文學常識《戰(zhàn)國策》:一部國別體史學著作,又稱《國策》。書中主要記載的是戰(zhàn)國時策士們的政治主張和言行策略,所以傳到西漢末時,由劉向整理校正后定名為《戰(zhàn)國策》。它是先秦歷史散文中的一枝奇葩,對后世史學和文學的影響極為深遠。
七、分析木蘭形象既有女兒情懷 更具英雄氣概古代杰出的巾幗英雄形象奇女子 普通人既是 巾幗英雄 又是 平民少女矯健的勇士 嬌美的女兒品質(zhì)勤勞善良又堅毅勇敢 淳厚樸實又機敏活潑 熱愛親人又報效國家 不慕高官厚祿而熱愛和平生活八、探究寫法詩中哪些地方寫得詳細?哪些地言寫得簡略?這樣寫有什么好處?從軍緣由——詳寫出征前的準備——略寫出征中的思親心理——詳寫關山飛度,征戰(zhàn)沙場——略寫 詳寫女兒情態(tài)略寫英雄氣概凱旋辭官——詳寫家人迎接——詳寫木蘭改裝——詳寫1(在內(nèi)容上)突出木蘭的兒女情態(tài),豐富了木蘭的英雄性格,使得人物形象真實感人。2(在結構上)詳略得當,使全詩顯得簡潔緊湊。繁簡安排有詳有略起到了突出人物特征 突出對木蘭的孝敬父母、勇于擔當重任的性格的頌揚
用巨人矗立比喻眼前的山峰;用一口井比喻山谷,既突出了山勢的險峻和連綿,又暗示了紅軍的艱難處境?!按Aⅰ保蜗蟮恼f明困難像攔路虎阻擋在面前,但是直立、高聳的老山界阻擋不了紅軍北上抗日的決心,也改變不了他們的長征必勝的信念?!皹O遠的又是極近的,極洪大的又是極細切的,像春蠶在咀嚼桑葉,像野馬在平原上奔馳,像山泉在嗚咽,像波濤在澎湃?!?用了什么修辭手法?寫出了作者怎樣的感受?“像春蠶在咀嚼桑葉”時連續(xù)不斷的細微聲音,比喻戰(zhàn)士們輕細的話語聲,說明戰(zhàn)士們被凍醒次數(shù)之多;“野馬奔馳”寫半夜山風之大,又喻寒風刺骨;“山泉嗚咽”用擬人化手法喻山泉時斷時續(xù)又暗指山勢崎嶇;“波濤澎湃”形容林木被風刮動的聲音。人聲和大自然的聲音交織在一起,烘托出夜色之深,夜景之美,透露出勃勃生機,洋溢著革命樂觀主義精神。非常形象地寫出山景之美,表現(xiàn)紅軍戰(zhàn)士的樂觀情懷。
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結 歸納 仔細 分析 講解 關鍵 詞語 思考 理解 記憶 帶領 學生 分析 引導 式啟 發(fā)學 生得 出結 果 10
創(chuàng)設情景 興趣導入問題 觀察鐘表,如果當前的時間是2點,那么時針走過12個小時后,顯示的時間是多少呢?再經(jīng)過12個小時后,顯示的時間是多少呢?.解決每間隔12小時,當前時間2點重復出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動腦思考 探索新知概念 對于函數(shù),如果存在一個不為零的常數(shù),當取定義域內(nèi)的每一個值時,都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個函數(shù)的一個周期. 由于正弦函數(shù)的定義域是實數(shù)集R,對,恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
【教學目標】知識目標:(1)掌握利用計算器求角度的方法;(2)了解已知三角函數(shù)值,求指定范圍內(nèi)的角的方法.能力目標:(1)會利用計算器求角;(2)已知三角函數(shù)值會求指定范圍內(nèi)的角;(3)培養(yǎng)使用計算工具的技能.【教學重點】已知三角函數(shù)值,利用計算器求角;利用誘導公式求出指定范圍內(nèi)的角.【教學難點】已知三角函數(shù)值,利用計算器求指定范圍內(nèi)的角.【教學設計】(1)精講已知正弦值求角作為學習突破口;(2)將余弦、正切的情況作類比讓學生小組討論,獨立認知學習;(3)在練習——討論中深化、鞏固知識,培養(yǎng)能力;(4)在反思交流中,總結知識,品味學習方法.【教學備品】教學課件.【課時安排】2課時.(90分鐘)【教學過程】 教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 5.7已知三角函數(shù)值求角 *構建問題探尋解決 問題 已知一個角,利用計算器可以求出它的三角函數(shù)值, 利用計算器,求= (精確到0.0001): 反過來,已知一個角的三角函數(shù)值,如何求出相應的角? 解決 準備計算器.觀察計算器上的按鍵并閱讀相關的使用說明書.小組內(nèi)總結學習已知三角函數(shù)值,利用計算器求出相應的角的方法. 利用計算器求出x:,則x= 歸納 計算器的標準設定中,已知正弦函數(shù)值,只能顯示出?90°~ 90°(或)之間的角. 介紹 質(zhì)疑 提問 引導 說明 了解 思考 動手 操作 探究 利用 問題 引起 學生 的好 奇心 并激 發(fā)其 獨立 尋求 計算 器操 作的 欲望 10
1.能從統(tǒng)計圖中獲取信息,并求出相關數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉,根據(jù)廣州市環(huán)境保護局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結:如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結:解答本題的關鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進行簡便計算.新課程理念要求把學生“學”數(shù)學放在教師“教”之前,“導學”是教學的重點.因此,在本節(jié)課的教學中,不要直接將結論告訴學生,而是引導學生從大量的實例中尋找解決問題的規(guī)律.學生經(jīng)歷積極探索知識的形成過程,最后總結得出有理數(shù)乘法的運算律.整個教學過程要讓學生積極參與,獨立思考和合作探究相結合,教師適當點評,以達到預期的教學效果.
解析:∵ab>0,根據(jù)“兩數(shù)相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負數(shù).故選D.方法總結:此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側重點在于考查學生的邏輯推理能力.讓學生深刻理解除法是乘法的逆運算,對學好本節(jié)內(nèi)容有比較好的作用.教學設計可以采用課本的引例作為探究除法法則的過程.讓學生自己探索并總結除法法則,同時也讓學生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數(shù)字不復雜的情況下直接運用除法法則求解.(2)在多個有理數(shù)進行除法運算,或者是乘、除混合運算時應該把除法轉化為乘法,然后統(tǒng)一用乘法的運算律解決問題.
1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數(shù)的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結:解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.
解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結:根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎上加一定利潤,其數(shù)量x與售價y的關系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關系式,并求出當數(shù)量是2.5千克時的售價.
探究點三:正比例函數(shù)的性質(zhì)已知正比例函數(shù)y=-kx的圖象經(jīng)過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經(jīng)過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減?。?、板書設計1.函數(shù)與圖象之間是一一對應的關系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質(zhì):正比例函數(shù)的圖象是一條經(jīng)過原點的直線.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應關系.