教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學生 分析 引導 式啟 發(fā)學 生得 出結(jié) 果 10
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 7.1 平面向量的概念及線性運算 *創(chuàng)設(shè)情境 興趣導入 如圖7-1所示,用100N①的力,按照不同的方向拉一輛車,效果一樣嗎? 圖7-1 介紹 播放 課件 引導 分析 了解 觀看 課件 思考 自我 分析 從實例出發(fā)使學生自然的走向知識點 0 3*動腦思考 探索新知 【新知識】 在數(shù)學與物理學中,有兩種量.只有大小,沒有方向的量叫做數(shù)量(標量),例如質(zhì)量、時間、溫度、面積、密度等.既有大小,又有方向的量叫做向量(矢量),例如力、速度、位移等. 我們經(jīng)常用箭頭來表示方向,帶有方向的線段叫做有向線段.通常使用有向線段來表示向量.線段箭頭的指向表示向量的方向,線段的長度表示向量的大?。鐖D7-2所示,有向線段的起點叫做平面向量的起點,有向線段的終點叫做平面向量的終點.以A為起點,B為終點的向量記作.也可以使用小寫英文字母,印刷用黑體表示,記作a;手寫時應(yīng)在字母上面加箭頭,記作. 圖7-2 平面內(nèi)的有向線段表示的向量稱為平面向量. 向量的大小叫做向量的模.向量a, 的模依次記作,. 模為零的向量叫做零向量.記作0,零向量的方向是不確定的. 模為1的向量叫做單位向量. 總結(jié) 歸納 仔細 分析 講解 關(guān)鍵 詞語 思考 理解 記憶 帶領(lǐng) 學生 分析 引導 式啟 發(fā)學 生得 出結(jié) 果 10
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
問題導學類比橢圓幾何性質(zhì)的研究,你認為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
問題導學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
由于這部分知識已要求學生在課前收集相關(guān)資料探討分析,,現(xiàn)在提供機會讓他們進行交流,充分發(fā)表各自的見解。所以,學生對這個知識掌握起來并不難。所以,我對這部分內(nèi)容不做太多的講解,只要做進一步的梳理,加深學生的理解即可。 第三是小結(jié)環(huán)節(jié) 在學生對西氣東輸工程的原因掌握之后進入的是小結(jié)環(huán)節(jié),這里我進一步提出問題:在西氣東輸工程段的建設(shè)中有沒有什么難關(guān)? 通過西氣東輸?shù)碾y度了解,間接的表現(xiàn)我國的科技的發(fā)展,增加學生的愛國情,同時也說明西氣東輸?shù)慕ǔ梢灿屑夹g(shù)這一原因。從而也完成了本課時的小結(jié)。 第四環(huán)節(jié)是作業(yè)布置 在這里要求學生課后預(yù)習本課剩下的內(nèi)容:思考西氣東輸對區(qū)域發(fā)展的影響以及為何要實施資源的跨區(qū)域調(diào)配。通過這樣的問題一方面為下節(jié)課學習奠定基礎(chǔ),另一方面體現(xiàn)本課學習從“個”到“類”從特殊到一般的過程。
教法、學法分析我通過閱讀教材、教參和新課標,分析學生學習狀況,認為對這一教學內(nèi)容理解起來比較容易。所以,在教學時我準備采取以下策略:1、放手讓學生自主解決問題,嘗試計算例7的1、2題。再通過學生口述計算過程,教師設(shè)問、強調(diào)重點使學生掌握本節(jié)課知識。2、通過學生反復(fù)敘述算理,培養(yǎng)學生口頭表達能力,并使他們自主探索“被除數(shù)中間或末尾沒有0,商中間或末尾有0”這一知識形成的過程。教學目標1、在熟練掌握一位數(shù)筆算除法法則的基礎(chǔ)上,會正確計算商中間或末尾有0的除法的另一種情況。2、能熟練地進行商中間有零和末尾有零的除法,形成一定的筆算技能。3、能結(jié)合具體情境估算三位數(shù)除以一位數(shù)的商,增強估算的意識和能力。
然后我讓自主嘗試探索末尾有0有乘法,然后讓學生自己上臺來給大家展示各自的算法,并討論比較那種算法更簡便,從而總結(jié)出末尾有0的乘法列豎式的簡便方法。為了解決這節(jié)課的重點和難點,我在這個環(huán)節(jié)里又有針對性的設(shè)計了兩個練習,一個是0和非0的對位,還有一個是積末尾補0。在教學因數(shù)中間有0的乘法,因為學生有了前面的基礎(chǔ),所以我直接讓學生在兩個問題中選擇一個解決。重點強調(diào)了因數(shù)中間0不能漏乘。在練習方面,我設(shè)計了看誰的眼睛亮,通過找錯誤,學生練習時,老師觀察到有共性的的錯誤,通過視頻展示臺,讓學生來尋找錯誤,再次突破本課的重點。一題是360×25因數(shù)末數(shù)一共有一個0,而積的末尾應(yīng)該有三個0。讓學生進行討論,再一次讓學生體會了積末尾0個數(shù)確定的方法。在鞏固和拓展聯(lián)系環(huán)節(jié),設(shè)計了闖關(guān)游戲,先是基本的計算練習,接著是因數(shù)末尾0個數(shù)的判斷和解決問題的聯(lián)系,通過練習,鞏固豎式的簡便寫法,提高學生的計算能力。
新知講授(一)——隨機試驗 我們把對隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗,簡稱試驗,常用字母E表示。我們通常研究以下特點的隨機試驗:(1)試驗可以在相同條件下重復(fù)進行;(2)試驗的所有可能結(jié)果是明確可知的,并且不止一個;(3)每次試驗總是恰好出現(xiàn)這些可能結(jié)果中的一個,但事先不確定出現(xiàn)哪個結(jié)果。新知講授(二)——樣本空間思考一:體育彩票搖獎時,將10個質(zhì)地和大小完全相同、分別標號0,1,2,...,9的球放入搖獎器中,經(jīng)過充分攪拌后搖出一個球,觀察這個球的號碼。這個隨機試驗共有多少個可能結(jié)果?如何表示這些結(jié)果?根據(jù)球的號碼,共有10種可能結(jié)果。如果用m表示“搖出的球的號碼為m”這一結(jié)果,那么所有可能結(jié)果可用集合表示{0,1,2,3,4,5,6,7,8,9}.我們把隨機試驗E的每個可能的基本結(jié)果稱為樣本點,全體樣本點的集合稱為試驗E的樣本空間。
國旗下的講話:《為了心中的價值——勇往直前》親愛的老師們、同學們:大家早上好!我是高XX級10班的xxx。首先我想問在場的朋友們幾個問題:大家認識貝克漢姆或者梅西嗎?大家喜歡看世界杯嗎?那為什么有這么多的朋友為足球如此著迷呢?到底是什么讓我們瘋狂愛上足球這項運動呢?今天就讓我們來探討這一問題,所以我講話的主題是《為了心中的價值——勇往直前》本屆足球市運會已經(jīng)在前天落下了帷幕。而我們遂中足球隊的好男兒,也一路過關(guān)斬將,成功打進四強。在此,我提議,讓我們以最熱烈的掌聲向他們表示衷心的祝賀與感謝!當大家為他們所取得的成績而祝賀的時候,是否又知道比賽背后的種種感動呢?第一場比賽,上天偏偏和我們的隊員開了一個玩笑。在點球大戰(zhàn)時,我們的球隊因一球之差,輸給了大英。比賽結(jié)束時,大家都很失落,然后他們很快振作了起來,一起總結(jié)經(jīng)驗、研究戰(zhàn)術(shù),在第二天的兩場比賽中,兩戰(zhàn)告捷。在周六對陣本屆市運會最強隊伍遂寧二中省運隊的時候,即使是面對如此強大的對手,也沒有一個人退縮,他們依然肩并著肩大聲喊出了他們的誓言:我們是遂中足球隊!我們有信心!我遂中男兒的堅持與信念也贏得了在場所有人的尊重。
上一周因為值周,就比平時多了一分認真和仔細。每日里來來回回校園、教室、和學生公寓數(shù)次,總以為能撿拾一些野蠻和污漬、懶惰和詭異,每日里去,每日里來,一周下來卻一無所擒。然而,大失所望之余有所獲,那就是,文明如美麗之花,炫耀奪目,在校園四處綻放!以前,與同事聊天論談,總愛把行知學校之旅娓娓道來,什么校園潔凈得讓你不得不把唾沫往肚里咽;學生文明得讓你點頭點得頭發(fā)酸;教師熱辣得讓你坐立不安心發(fā)軟。而今在咱們的校園里,無論是在校外還是校園內(nèi);無論是在樓道還是走廊上;無論是熟悉的還是不熟悉的,十之八九那一聲聲“老師好”,在你不斷地點頭和回復(fù)中,分明also會感受到那一絲絲的驕傲和自豪。心緒如美麗之花,被這暖洋洋的問候日益滋潤而絢麗綻放。當你行走在初二年級走廊的時候,你總有一種不一樣的感覺。干凈明潔的走廊,每天總有那么一塊磨石地板熠熠生輝,錚錚發(fā)亮,美麗的磨石,不,是美麗的寶石,是吳書平老師辛勤勞作,率先垂范,為人師表的一塊瑰寶,我們不得不說,吳老師,向你敬禮,你辛苦了!也許,正是因為你,校園因此而美麗,文明因此而燦爛,謝謝你,吳老師!
親愛的xx:上周一的大課間活動,我校為在xx首屆校園廣播體操視頻比賽中獲得榮譽稱號的班級,頒發(fā)了獎狀及獎品。秉承“我們不一樣,我們都很棒”的評價理念,我校為12個教學班,設(shè)置了不同的獎項名稱——示范獎、奮進獎、鼓勵獎,讓每個班級都得到自己的長處獎項。周一下午的教職工大會上,我校舉行了xx六一兒童節(jié)文藝匯演總結(jié)及頒獎盛典。我們采取電影頒獎的形式,邀請xx教師當開獎嘉賓,每一個班都有獎項:最佳編創(chuàng)及表演獎、最佳指導組合及外宣獎、最佳人氣獎、最佳師生同臺獎、……每開一個獎,全體xx熱烈鼓掌,甚至還有尖叫。最后一個上臺開獎的是已有數(shù)月身孕的xx教師段蓉珍。她開獎的項目是最佳編創(chuàng)及表演獎。獲得該獎的是班詩歌朗誦《我的祖國》、班情景舞蹈《跪羊圖》、班歌伴舞《一二三四歌》。頒獎典禮結(jié)束后,我校組織參加高考監(jiān)考工作的老師開會,進一步明確監(jiān)考責任,確保監(jiān)考順利進行。此次監(jiān)考,我校共有28名教師參加。周二上午的大課間活動,來自XX區(qū)xx鎮(zhèn)學校鄉(xiāng)村少年宮近二十名師生,在校長敬正江的指揮下,為xx全體師生表演了抖空竹、舞獅、魔術(shù)絕活。該校特聘的民間藝人,年逾花甲的王懷奇,帶領(lǐng)弟子們,將抖空竹絕活,以令人驚嘆的手法一一展現(xiàn)。如天籟般的空竹聲響,輕脆明亮的回蕩在我們的耳畔。從空中掉落,穩(wěn)穩(wěn)落在牽引繩上的空竹,令人眼花繚亂。
“當前,少數(shù)D員、干部自我革命精神淡化,安于現(xiàn)狀、得過且過;有的檢視問題能力退化,患得患失、諱疾忌醫(yī);有的批評能力弱化,明哲保身、裝聾作啞;有的驕奢腐化,目中無紀甚至頂風違紀,違反D的紀律和中央八項規(guī)定精神問題屢禁不止。”針對問題,強調(diào)指出,要蕩滌一切附著在D肌體上的骯臟東西,非常必要,非常及時,非常有針對性,有著非常重要的歷史意義。凡是過往,皆為序章。初心易得,始終難守。我們要依照所強調(diào)的,全D同志必須始終保持崇高的革命理想和旺盛的革命斗志,用好批評和自我批評這個銳利武器,馳而不息抓好正風肅紀反腐,不斷增強D自我凈化、自我完善、自我革新、自我提高的能力,堅決同一切可能動搖D的根基、阻礙D的事業(yè)的現(xiàn)象作斗爭,蕩滌一切附著在D肌體上的骯臟東西,把我們D建設(shè)得更加堅強有力。不斷深化D的自我革命,持續(xù)推動全D不忘初心、牢記使命,讓我們的D成為永遠打不倒、壓不垮的馬克思主義政D。
活動四:自主學習,尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫???”同桌演示尺規(guī)作圖。最后折紙驗證,使整個學習過程更加嚴謹。我將用下面這個課件給學生展示作圖過程。再次回顧情境,讓學生完成情境中的問題。(三)講練結(jié)合,鞏固新知第一個題目是直接運用性質(zhì)解決問題,比較簡單,面向全體學生。我還設(shè)計了第二個題目,想訓練學生審題的能力。(四)課堂小結(jié)在學生們共同歸納總結(jié)本節(jié)課的過程中,讓學生獲得數(shù)學思考上的提高和感受成功的喜悅并進一步系統(tǒng)地完善本節(jié)課的知識。(五)當堂檢測為了檢測學生學習情況,我設(shè)計了當堂檢測。第一個題目,讓學生學會轉(zhuǎn)化的思想來解決問題;第二個題目練習尺規(guī)作圖。
2、課標要求對于本節(jié)課內(nèi)容課標要求:探索并掌握兩個三角形全等的條件;注重所學內(nèi)容與現(xiàn)實生活的聯(lián)系,注重經(jīng)歷觀察、操作、推理、想像等探索過程。初步建立空間觀念,發(fā)展幾何直覺;在探索并掌握兩個三角形全等的條件,與他人合作交流的過程中,發(fā)展合情推理,進一步學習有條理的思考與表達。二、學生分析 1、七年級學生的理解能力和思維特征和生理特征,學生好動性,注意力易分散,愛發(fā)表見解,希望得到老師的表揚等特點,所以在教學中應(yīng)抓住學生這一生理心理特點,一方面要運用直觀生動的形象,激發(fā)學生的興趣,使他們的注意力始終集中在課堂上;另一方面要不斷創(chuàng)造條件和機會,讓學生發(fā)表見解,充分發(fā)揮學生學習的主動性,體現(xiàn)學生的主體地位。
教學說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應(yīng)用的例子。要解決問題(3),只需要在四邊形中構(gòu)建出三角形結(jié)構(gòu),這樣就可以幫助其穩(wěn)定。設(shè)計意圖:通過學生動手操作,探究三角形穩(wěn)定性及生活中的應(yīng)用,讓學生體驗數(shù)學來源于生活,服務(wù)于生活的辯證思想,感受數(shù)學美。 (五)總結(jié)反思,情意發(fā)展問題:通過這節(jié)課的學習你有什么收獲?多媒體演示:(1)知識方面:①三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應(yīng)用。
設(shè)計說明:設(shè)計這組測驗為了反饋學生學習情況,第1題較簡單,也是為了讓提高學生學習士氣,體會到成功的快樂;第2題稍微有點挑戰(zhàn)性,利用直角三角形外心位置規(guī)律解答,也滿足不同層次學生的不同需求.教師可們采用搶答方式調(diào)動學生積極性,學生搶答,師生共同反饋答題情況,教師最后出示正確答案并做總結(jié)性評價.環(huán)節(jié)十:布置作業(yè)課件演示: 拓展延伸1.思考:經(jīng)過4個(或4個以上的)點是不是一定能作圓?2.作業(yè):A層 課本118頁習題A組1,2,3; B層 習題B組.設(shè)計說明:設(shè)計第1題的原因保證了知識的完整性,學生在探究完三個點作圓以后,肯定有一個思維延續(xù),不在同一直線上三個點確定一個圓,四個點又會怎樣?四個點又分共線和不共線兩種情況,不共線的四點作圓問題又能用三點確定一個圓去解釋,本題既應(yīng)用了新學知識,又給學生提供了更廣泛地思考空間.第2題,主要是讓學生進一步鞏固新學知識,規(guī)范解題步驟. 在作業(yè)設(shè)計時,既面向全體學生,又尊重學生的個體差異,以掌握知識形成能力為主要目的.