提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中語文必修3《愛的奉獻 學(xué)習(xí)議論中的記敘》說課稿

  • 大班數(shù)學(xué)教案:電話號碼學(xué)習(xí)6以內(nèi)的數(shù)

    大班數(shù)學(xué)教案:電話號碼學(xué)習(xí)6以內(nèi)的數(shù)

    活動準備:電話本,!—6的數(shù)字卡活動過程:一,用打電話的方式,列出不同數(shù)字的排序1, 小動物要開運動會了,我們怎么才能通知他們呢?2, 打電話要知道電話號碼,我們來查一查,小動物家的電話號碼是多少?3, 這么多的電話號碼哪些地方是一樣的?4, 都有5個數(shù)字,為什么電話號碼是不一樣的呢?小結(jié):相同的幾個數(shù)字,經(jīng)過不同的排列,就會有不同的電話號碼,真有趣!

  • 在2023年關(guān)于學(xué)習(xí)貫徹主題教育的點評總結(jié)講話

    在2023年關(guān)于學(xué)習(xí)貫徹主題教育的點評總結(jié)講話

    同時,要結(jié)合整改做好“預(yù)防文章”,突出抓早抓小,完善各項規(guī)章制度,把紀律挺在前面,強化制度的剛性約束,切實把專題學(xué)習(xí)貫徹新時代中國特色社會主義思想ZT教育的成果轉(zhuǎn)化為指導(dǎo)工作實踐的有力武器。三是嚴守紀律規(guī)矩,保持勤政廉潔。身邊的反面典型就是最好的警示,大家要深刻汲取XX嚴重違紀違法案件教訓(xùn),深刻認識到失責(zé)必問、問責(zé)必嚴已經(jīng)成為常態(tài)。要堅決扛起全面從嚴治D的政治責(zé)任,嚴格落實“一崗雙責(zé)”,營造風(fēng)清氣正的政治生態(tài)。要牢固樹立法紀意識,嚴守政治紀律和政治規(guī)矩。要樹立正確的權(quán)力觀、政績觀、事業(yè)觀,嚴把小事、守好小節(jié),管好家人、樹好家風(fēng),遠離“圈子”、防止“圍獵”,始終做到崇廉拒腐,干凈做事。最后,希望XX班子團結(jié)帶領(lǐng)XXD員干部群眾堅持發(fā)展為先、實干為要,緊盯目標(biāo)任務(wù),奮力比學(xué)趕超,積極爭先進位,有序推進年度各項工作,交出一份優(yōu)異的答卷。

  • (初中)國旗下講話:尋找學(xué)習(xí)的快樂,享受生活的幸福

    (初中)國旗下講話:尋找學(xué)習(xí)的快樂,享受生活的幸福

    學(xué)習(xí)快樂嗎?我想很多學(xué)生的回答是“不快樂”,為什么呢?看看我們沉重的書包就有了答案:它里面裝滿了早起晚睡、作業(yè)考試、成績評比、特招重點等等,所以有人形象的說它是我們身上的負擔(dān)和包袱,壓得我們喘不過氣來!果真如此嗎?當(dāng)我們靜下心來冷靜的想一想,就會得出另外一種答案:沉重的書包是我們?nèi)松闹悄摇⒆孕诺脑慈?、遠大的抱負!我們說學(xué)習(xí)苦,是因為我們僅僅從生理的角度去衡量它,苦于沒有時間看電視、泡網(wǎng)吧、玩游戲、苦于沒有時間貪睡、貪吃、貪玩,總之一句話,苦于沒有時間貪圖享樂!固然,吃喝玩是快樂的,但這種樂趣只是低級的、物質(zhì)的、短暫的,是動物本能式的快樂,作為人類享受高級的、持久的快樂,應(yīng)該是精神領(lǐng)域的快樂,她能陶冶情操、讓我們自信自強,使我們生活得更幸福!如何獲得,只有學(xué)習(xí)、學(xué)習(xí)再學(xué)習(xí)!

  • 關(guān)于專心學(xué)習(xí)的國旗下的講話

    關(guān)于專心學(xué)習(xí)的國旗下的講話

    專心于學(xué)習(xí)凡事都要專心,這是我們經(jīng)常說的一句話,可是真正做到的人不是很多。從科學(xué)的角度看,人們專心干事的時候腦細胞只用于一個方面------就是要干的事,這樣可使事情辦好。而不專心的人工作時心猿意馬,總是想到別的事情,這樣會使腦細胞過度疲勞,從而削弱了它們的能力,主要的事情當(dāng)然做不好啦!為什么人們總說“大人記憶力不如小孩”呢?原因就在于專心與不專心。小孩子考慮的事很少,他們天真幼稚的心里充滿了求和的欲望,他們沒見過世面,瑣碎的雜事很少接觸,一天到念大人教的那幾首古詩,可謂專心致志。所以到了成年那幾首古詩也忘不了。大人則不同,整天忙忙碌碌,工作、生活------事情之繁雜,使其記不住東西。但他們只要在不一定的的學(xué)習(xí)時間內(nèi),保證不想其他事,并且溫故知新,時常想,也可以做到不忘所獲。這正是專心與不專心造成的呀?為什么許多人都說:“女孩子不如男孩子聰明”?原因仍是專心與不專心。上中學(xué)后,男同學(xué)在學(xué)習(xí)上看來來怎么用功,但真正學(xué)起來,大腦便萬事皆宜,抓緊時間,專心讀書,一研究起問題,不達目的決不罷休,真是如切如磋,如琢如磨,所以他們總能做出許多難題。

  • 大班安全教案:活動中的安全

    大班安全教案:活動中的安全

    2、尋找教室里的不安全因素,并貼上標(biāo)記提醒同伴。 活動準備: 1、小朋友戶外活動的圖片 2、紅色標(biāo)記 活動過程: 1、出示幼兒戶外活動時的圖片   提問:圖上有誰?他們在玩什么?你覺得他們這樣玩好嗎?也許會發(fā)生什么事?   (會摔跤、會打痛、會從玩具架上掉下來等等)   那你覺得應(yīng)該怎么玩,小朋友才不會發(fā)生這樣的事呢?(引導(dǎo)幼兒大膽交流)

  • 人教版高中政治必修2我國處理國際關(guān)系的決定因素:國家利益教案

    人教版高中政治必修2我國處理國際關(guān)系的決定因素:國家利益教案

    從國際法角度看,國際社會的每一個主權(quán)國家應(yīng)該是一律平等的,但是,在現(xiàn)實的國際關(guān)系中,每個國家的國際地位、國際影響力,歷來都是由國家力量決定的。國家力量發(fā)生變化,也會引起國際關(guān)系的變化。經(jīng)濟、科技落后,軍力不強,國內(nèi)政局不安,它的國際影響力、參與力就不強。正因為如此,某些發(fā)達國家往往以其強大的國家力量為后盾,推行霸權(quán)主義、強權(quán)政治。二、維護我國的國家利益教師活動:閱讀教材第100頁內(nèi)容,思考討論為什么要維護我國的國家利益?我國的國家利益包括哪些內(nèi)容?學(xué)生活動:認真思考并積極討論,踴躍發(fā)言1、原因我國是人民當(dāng)家作主的社會主義國家,國家利益與人民的根本利益相一致。維護我國的國家利益就是維護廣大人民的根本利益,具有正當(dāng)性和正義性。2、內(nèi)容我國國家利益的主要內(nèi)容包括:安全利益,如國家的統(tǒng)一、獨立、主權(quán)和領(lǐng)土完整;政治利益,如我國政治、經(jīng)濟、文化等制度的鞏固;經(jīng)濟利益,如我國資源利用的效益、經(jīng)濟活動的利益和國家物質(zhì)基礎(chǔ)的增強等。

  • 人教版高中政治必修2民族區(qū)域自治制度:適合國情的基本政治制度教案

    人教版高中政治必修2民族區(qū)域自治制度:適合國情的基本政治制度教案

    1、有利于維護國家的統(tǒng)一和安全民族區(qū)域自治以領(lǐng)土完整、國家統(tǒng)一為前提和基礎(chǔ),是國家集中統(tǒng)一領(lǐng)導(dǎo)與民族區(qū)域自治的有機結(jié)合。增強了中華民族的凝聚力,使各族人民特別是少數(shù)民族人民把熱愛民族與熱愛祖國的感情結(jié)合起來,自覺擔(dān)負起捍衛(wèi)祖國統(tǒng)一、保衛(wèi)邊疆的光榮職責(zé)。2、有利于保障少數(shù)民族人民當(dāng)家作主的權(quán)利民族自治地方充分享有自治權(quán)利。自主管理本地內(nèi)部事務(wù),滿足了少數(shù)民族人民積極參加國家政治生活的愿望。3、有利于發(fā)展平等、團結(jié)、互助的社會主義新型民族關(guān)系民族自治地方以一個或幾個少數(shù)民族為主體,同時包括當(dāng)?shù)鼐幼〉臐h族和其他少數(shù)民族,各族人民和各族干部之間聯(lián)系更加密切,逐步消除了歷史上遺留下來的民族隔閡。4、有利于促進社會主義現(xiàn)代化事業(yè)的發(fā)展自治機關(guān)能夠結(jié)合本民族、本地區(qū)特點,把少數(shù)民族的特殊利益與國家的整體利益協(xié)調(diào)起來,充分發(fā)揮各自的特長和優(yōu)勢,調(diào)動各族人民參加國家建設(shè)的積極性、創(chuàng)造性。

  • 人教版高中政治必修2處理民族關(guān)系的原則:平等、團結(jié)、共同繁榮教案

    人教版高中政治必修2處理民族關(guān)系的原則:平等、團結(jié)、共同繁榮教案

    一、教材分析普通高中思想政治課程標(biāo)準及浙江省普通高中新課程實驗學(xué)科教學(xué)指導(dǎo)意見對本課時內(nèi)容做了如下規(guī)定:基本要求:知道我國是統(tǒng)一的多民族國家;理解我國處理民族關(guān)系的三項基本原則及其相互關(guān)系;懂得處理民族關(guān)系的重要性,自覺履行維護國家統(tǒng)一和民族團結(jié)的義務(wù)。發(fā)展要求:聯(lián)系國內(nèi)外的具體事例,加深理解我國處理民族關(guān)系的基本原則的重要性。本框題有如下內(nèi)容不作拓展:我們偉大的祖國是各族人民共同締造的;我國新型民族關(guān)系的形成;實施西部大開發(fā)戰(zhàn)略對加快民族自治地方的經(jīng)濟和社會發(fā)展的意義;我國能夠真正建立新型民族的原因?!短幚砻褡尻P(guān)系的原則:平等、團結(jié)、共同繁榮》是高一《政治生活》第三單元第七課內(nèi)容,本課內(nèi)容由三目構(gòu)成,第一目:雪域高原的歷史性跨越,第二目:我國處理民族關(guān)系的基本原則,第三目:鞏固社會主義民族關(guān)系,我們該做什么,能做什么。

  • 空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    空間向量及其運算的坐標(biāo)表示教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關(guān)系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時我們就建立了一個空間直角坐標(biāo)系Oxyz,O叫做原點,i,j,k都叫做坐標(biāo)向量,通過每兩個坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標(biāo)是坐標(biāo)原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點;當(dāng)Δ=0時,直線與拋物線相切,有一個切點;當(dāng)Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準方程(精確到1m)解:設(shè)雙曲線的標(biāo)準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標(biāo)易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準方程(對于焦點位置不確定的橢圓可能有兩種標(biāo)準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.

  • 橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(1)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 國旗下的講話:學(xué)會生活 學(xué)會學(xué)習(xí)

    國旗下的講話:學(xué)會生活 學(xué)會學(xué)習(xí)

    國旗下的講話:學(xué)會生活學(xué)會學(xué)習(xí)老師們、同學(xué)們:時值深秋,從傳統(tǒng)節(jié)氣上講,我們現(xiàn)在已步入寒露,古語說:“露氣寒冷,將凝結(jié)也?!笔紫认M蠹易⒁獗E<磳⒌絹淼亩臼俏覀冎袑W(xué)生最為寶貴的學(xué)期,有很多的挑戰(zhàn)、考驗以及收獲和驚喜在等待著大家。在此,我想問同學(xué)們?nèi)齻€問題。第一個問題:這個學(xué)期,你制定了奮斗目標(biāo)嗎?實現(xiàn)夢想的歷程是需要規(guī)劃的,當(dāng)我們把它分解為一個一個階段,每個階段都有一個明確的目標(biāo)時,夢想就顯得不那么遙遠了。當(dāng)這些目標(biāo)逐一實現(xiàn)——就像游戲打完了通關(guān),你就成為了夢想中的最好的自己。目標(biāo)不要定的過高也不要讓自己太輕松。目標(biāo)應(yīng)該是具體、明確、清晰、可見的,你可以清楚自己是怎樣越來越接近目標(biāo)的,成就感和自信心就會伴隨著你。下面這個故事將會告訴你目標(biāo)以及目標(biāo)的確定性與清晰度是如何的重要。弗洛倫絲·查德威——第一個往返游過英吉利海峽的女子。她在卡特里那海峽冰冷的海水里堅持游了將近16個小時之后,她想上船了。母親在護衛(wèi)船上鼓勵她再堅持一會兒:“你已經(jīng)離岸邊很近了——你能游完全程的!”但弗洛倫絲看不到,放眼望去,只有濃霧。她被人拉上了護衛(wèi)船。很快,她發(fā)現(xiàn),她其實離岸邊只有不到半英里了!不是疲勞,也不是冰冷的海水打敗了她,而是大霧使她看不到自己的目的地。可見,目標(biāo)是努力的方向,是前進的動力,是精神的支柱,是指路的明燈。有一個清晰和確定目標(biāo)的新學(xué)期生活一定是充實和富有意義的。

  • 人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    三、堅持人民民主專政教師活動:請同學(xué)們閱讀教材P7頁,思考下列問題:為什么要堅持人民民主專政?現(xiàn)階段如何堅持人民民主專政?學(xué)生活動:閱讀課本,找出問題。1、堅持人民民主專政的重要性(1)堅持人民民主專政是四項基本原則之一,是我國的立國之本。(2)堅持人民民主專政是現(xiàn)代化建設(shè)的政治保證。堅持人民民主,才能調(diào)動人民現(xiàn)代化建設(shè)的積極性;堅持對敵對勢力的專政,才能保障人民民主,維護國家安定。2、堅持人民民主專政的新的時代內(nèi)容突出經(jīng)濟建設(shè)服務(wù)職能;為改革開放和現(xiàn)代化建設(shè)創(chuàng)造良好國內(nèi)外環(huán)境;重視法制建設(shè),依法治國;發(fā)展人民民主,加強民主制度建設(shè)。(三)課堂總結(jié)、點評本節(jié)內(nèi)容講述了我國的國家性質(zhì)的有關(guān)知識,懂得我國是人民民主專政的社會主義國家,其本質(zhì)是人民當(dāng)家作主,我國的人民民主具有廣泛性和真實性,是真正的大多數(shù)人的統(tǒng)治,必須堅持人民民主專政。

  • 人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    人教版高中政治必修2人民民主專政:本質(zhì)是人民當(dāng)家作主教案

    4、民主和專政(1)民主,是指在范圍內(nèi),按照和來共同管理國家事務(wù)的國家制度。民主具有鮮明的,民主總是屬于。世界上從來沒有的民主。(2)專政,即主要依靠實行的統(tǒng)治。(3)民主制國家是民主和專政的辯證統(tǒng)一(對立統(tǒng)一)①民主和專政相互區(qū)別、相互對立,民主只適用于,專政則適用于。②民主與專政是相輔相成、互為前提。民主是專政的,專政是民主的。(4)人民民主專政也是民主與專政的辯證統(tǒng)一。三、必須堅持人民民主專政(1)堅持人民民主專政的必然性(原因)第一、堅持人民民主專政是之一,四項基本原則是我國的,是我國國家生存發(fā)展的。第二、堅持人民民主專政是社會主義現(xiàn)代化建設(shè)的。①只有充分發(fā)揚社會主義民主,確保的地位,保證人民,尊重和保障,才能。②只有堅持國家的專政職能,打擊,才能保障,維護。(2)堅持人民民主專政的新的要求:

上一頁123...545556575859606162636465下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!