[設(shè)計(jì)意圖:鞏固減法的意義,培養(yǎng)學(xué)生初步的思維能力。](2)組織學(xué)生自己先算一算,教師巡視,捕捉學(xué)生學(xué)習(xí)信息,糾正不良學(xué)習(xí)習(xí)慣。[設(shè)計(jì)意圖:通過巡視,及時(shí)捕捉學(xué)生的學(xué)習(xí)信息,發(fā)現(xiàn)問題及時(shí)解決;把培養(yǎng)學(xué)生良好的計(jì)算習(xí)慣、審題習(xí)慣及檢查習(xí)慣落到實(shí)處。](3)組織學(xué)生全班交流計(jì)算方法。組織學(xué)生在全班交流解決計(jì)算“32-2=”的方法,引導(dǎo)學(xué)生理解“32是由3個(gè)十和2個(gè)一組成,從32里去掉2,就剩3個(gè)十,所以32減2等于30”。如果學(xué)生用其他的方法來計(jì)算,只要正確,也要肯定。[設(shè)計(jì)意圖:同前面一樣,鞏固數(shù)的組成,訓(xùn)練每一個(gè)學(xué)生“述說整十?dāng)?shù)加一位數(shù)相應(yīng)減法的計(jì)算過程”,突破難點(diǎn)。]3.加減法對比組織學(xué)生比較“30+2=32”和“32-2=30”,并說一說有什么發(fā)現(xiàn),使學(xué)生認(rèn)識到“3個(gè)十和2個(gè)一組成32,所以30加2等于32;反過來,32是由3個(gè)十和2個(gè)一組成,從32里去掉2,就剩3個(gè)十,所以32減2等于30”[設(shè)計(jì)意圖:強(qiáng)化加減法意義的聯(lián)系,培養(yǎng)學(xué)生初步的思維能力。]
教學(xué)目標(biāo)1、通過教學(xué),學(xué)生懂得應(yīng)用加法運(yùn)算定律可以使一些分?jǐn)?shù)計(jì)算簡便,會進(jìn)行分?jǐn)?shù)加法的簡便計(jì)算.2、培養(yǎng)學(xué)生仔細(xì)、認(rèn)真的學(xué)習(xí)習(xí)慣.3、培養(yǎng)學(xué)生觀察、演繹推理的能力.教學(xué)重點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡便.教學(xué)難點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡便.教學(xué)過程設(shè)計(jì)一、復(fù)習(xí)準(zhǔn)備(演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.教師:整數(shù)加法的運(yùn)算定律有哪幾個(gè)?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應(yīng)用了什么運(yùn)算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分?jǐn)?shù)加法呢?這節(jié)課我們就一起來研究.二、學(xué)習(xí)新課(繼續(xù)演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?
解析:先利用正比例函數(shù)解析式確定A點(diǎn)坐標(biāo),然后觀察函數(shù)圖象得到,當(dāng)1<x<2時(shí),直線y=2x都在直線y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,則A點(diǎn)坐標(biāo)為(1,2),∴當(dāng)x>1時(shí),2x>kx+b.∵函數(shù)y=kx+b(k≠0)的圖象經(jīng)過點(diǎn)B(2,0),即不等式0<kx+b<2x的解集為1<x<2.故選C.方法總結(jié):本題考查了一次函數(shù)與一元一次不等式的關(guān)系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在y軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合.三、板書設(shè)計(jì)1.通過函數(shù)圖象確定一元一次不等式的解集2.一元一次不等式與一次函數(shù)的關(guān)系本課時(shí)主要是掌握運(yùn)用一次函數(shù)的圖象解一元一次不等式,在教學(xué)過程中采用講練結(jié)合的方法,讓學(xué)生充分參與到教學(xué)活動中,主動、自主的學(xué)習(xí).
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個(gè)為正,則另一個(gè)就用負(fù)表示.理解表中的正負(fù)號表示的含義,根據(jù)條件計(jì)算出每天的水位即可求解;(2)只要觀察星期日的水位是正負(fù)即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題.探究點(diǎn)二:有理數(shù)的加減混合運(yùn)算在生活中的其他應(yīng)用
A、B兩碼頭相距140km,一艘輪船在其間航行,順?biāo)叫杏昧?h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時(shí)間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設(shè)這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結(jié):本題關(guān)鍵是找到各速度之間的關(guān)系,順?biāo)伲届o速+水速,逆速=靜速-水速;再結(jié)合公式“路程=速度×時(shí)間”列方程組.三、板書設(shè)計(jì)“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學(xué)思想方法是數(shù)學(xué)學(xué)習(xí)的靈魂.教學(xué)中注意關(guān)注蘊(yùn)含其中的數(shù)學(xué)思想方法(如化歸方法),介紹化歸思想及其運(yùn)用,既可提高學(xué)生的學(xué)習(xí)興趣,開闊視野,同時(shí)也提高學(xué)生對數(shù)學(xué)思想的認(rèn)識,提升解題能力.
提示:要學(xué)會在圖表中用含未知數(shù)的代數(shù)式表示出要分析的量;然后利用相等關(guān)系列方程。2.Flash動畫,情景再現(xiàn).3.學(xué)法小結(jié):(1)對較復(fù)雜的問題可以通過列表格的方法理清題中的未知量、已知量以及等量關(guān)系,這樣,條理比較清楚.(2)借助方程組解決實(shí)際問題.設(shè)計(jì)意圖:生動的情景引入,意在激發(fā)學(xué)生的學(xué)習(xí)興趣;利用圖表幫助分析使條理清楚,降低思維難度,并使列方程解決問題的過程更加清晰;學(xué)法小結(jié),著重強(qiáng)調(diào)分析方法,養(yǎng)成歸納小結(jié)的良好習(xí)慣。實(shí)際效果:動畫引入,使數(shù)字問題變的更有趣,確實(shí)有效地激發(fā)了學(xué)生的興趣,學(xué)生參與熱情很高;借助圖表分析,有效地克服了難點(diǎn),學(xué)生基本都能借助圖表分析,在老師的引導(dǎo)下列出方程組。4.變式訓(xùn)練師生共同研究下題:有一個(gè)三位數(shù),現(xiàn)將最左邊的數(shù)字移到最右邊,則比原來的數(shù)小45;又知百位數(shù)字的9倍比由十位數(shù)字和個(gè)位數(shù)字組成的兩位數(shù)小3,試求原來的3位數(shù).
故直線l2對應(yīng)的函數(shù)關(guān)系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標(biāo)系內(nèi)畫出直線l1,l2的圖象如圖,可知點(diǎn)A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應(yīng)用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來,既考查了基本知識,又不局限于基本知識.三、板書設(shè)計(jì)利用二元一次方程組確定一次函數(shù)表達(dá)式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達(dá)式:y=kx+b(k≠0);2.將已知條件代入上述表達(dá)式中得k,b的二元一次方程組;3.解這個(gè)二元一次方程組得k,b的值,進(jìn)而得到一次函數(shù)的表達(dá)式.通過教學(xué),進(jìn)一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉(zhuǎn)化.通過對本節(jié)課的探究,培養(yǎng)學(xué)生的觀察能力、識圖能力以及語言表達(dá)能力.
解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個(gè)數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€(gè)位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時(shí),14-x=6.所以這個(gè)兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個(gè),且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書設(shè)計(jì)幾何問題及數(shù)字問題幾何問題面積問題動點(diǎn)問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價(jià)值.
解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過求解不等式確定最值,求最值時(shí)要注意自變量的取值范圍.解:設(shè)購進(jìn)A種樹苗x棵,則購進(jìn)B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進(jìn)A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費(fèi)用為80x+60(17-x)=20x+1020(元),費(fèi)用最省需x取最小整數(shù)9,此時(shí)17-x=17-9=8,此時(shí)所需費(fèi)用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費(fèi)用最省,此方案所需費(fèi)用1200元.三、板書設(shè)計(jì)一元一次不等式與一次函數(shù)關(guān)系的實(shí)際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時(shí)結(jié)合生活中的實(shí)例組織學(xué)生進(jìn)行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學(xué)生分析、解決問題的能力,從新課到練習(xí)都充分調(diào)動了學(xué)生的思考能力,為后面的學(xué)習(xí)打下基礎(chǔ).
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點(diǎn)E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時(shí),對應(yīng)的x的兩個(gè)值,從而可確定t的取值范圍.解:(1)由題意得點(diǎn)E的坐標(biāo)為(1,1.4),點(diǎn)B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時(shí),-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實(shí)際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實(shí)際問題的能力.三、板書設(shè)計(jì)二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
三、課后自測:1、如圖,A、B、C、D為矩形的四個(gè)頂點(diǎn),AB=16cm,BC= 6cm,動點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動,一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動。經(jīng)過多長時(shí)間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開始沿邊AB以2cm/s的速度向點(diǎn)B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時(shí)的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時(shí)的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時(shí)才 能追上( 點(diǎn)B為追上時(shí)的位置)?
【教學(xué)目標(biāo)】(一)教學(xué)知識點(diǎn)能夠利用描點(diǎn)法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗(yàn).(三)情感態(tài)度與價(jià)值觀:通過學(xué)生自己的探索活動,達(dá)到對拋物線自身特點(diǎn)的認(rèn)識和對二次函數(shù)性質(zhì)的理解. 【重、難點(diǎn)】重點(diǎn) :會畫y=ax2的圖象,理解其性質(zhì)。難點(diǎn):描點(diǎn)法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時(shí)15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們在教學(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
(3)設(shè)點(diǎn)A的坐標(biāo)為(m,0),則點(diǎn)B的坐標(biāo)為(12-m,0),點(diǎn)C的坐標(biāo)為(12-m,-16m2+2m),點(diǎn)D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時(shí),“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點(diǎn)選取一個(gè)合適的參數(shù)表示它們,得出關(guān)系式后運(yùn)用函數(shù)性質(zhì)來解.三、板書設(shè)計(jì)二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機(jī)會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨(dú)到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點(diǎn):二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點(diǎn)在同一平面直角坐標(biāo)系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點(diǎn)坐標(biāo)、開口方向及最高(低)點(diǎn)坐標(biāo).解析:利用列表、描點(diǎn)、連線的方法作出兩個(gè)函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點(diǎn)、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開口方向向上,最低點(diǎn)坐標(biāo)為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點(diǎn)坐標(biāo)為(0,0),開口方向向下,最高點(diǎn)坐標(biāo)為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時(shí),還可以根據(jù)它的對稱性,先用描點(diǎn)法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(diǎn)(0,c),∴兩個(gè)函數(shù)圖象交于y軸上的同一點(diǎn),故B選項(xiàng)錯(cuò)誤;當(dāng)a>0時(shí),二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項(xiàng)錯(cuò)誤;當(dāng)a<0時(shí),二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項(xiàng)錯(cuò)誤,D選項(xiàng)正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點(diǎn)坐標(biāo)等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
1.使學(xué)生掌握用描點(diǎn)法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點(diǎn)法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點(diǎn)坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點(diǎn)坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點(diǎn)坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點(diǎn)坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個(gè)單位再向上平移1個(gè)單位得到的)
因?yàn)閤3表示手機(jī)部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場共有兩種進(jìn)貨方案.方案1:購甲型號手機(jī)30部,乙型號手機(jī)10部;方案2:購甲型號手機(jī)20部,丙型號手機(jī)20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進(jìn)貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時(shí),要注意不同型號的手機(jī)數(shù)量和單價(jià)要對應(yīng).三、板書設(shè)計(jì)增收節(jié)支問題分析解決列二元一次方程,組解決實(shí)際問題)增長率問題利潤問題利用圖表分析等量關(guān)系方案選擇通過問題的解決使學(xué)生進(jìn)一步認(rèn)識數(shù)學(xué)與現(xiàn)實(shí)世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話題的研討,從中懂得數(shù)學(xué)的價(jià)值,逐步形成運(yùn)用數(shù)學(xué)的意識;并且通過對問題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟(jì)意識,增強(qiáng)他們的節(jié)約和有效合理利用資源的意識.
答:書包單價(jià)92元,隨身聽單價(jià)360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價(jià)92元,隨身聽單價(jià)360元。2)在人民商場購買隨聲聽與書包各一樣需花費(fèi)現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂福可先花現(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因?yàn)?62<400,所以也可以選擇在家樂福購買。因?yàn)?62>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學(xué)習(xí)反思;(5分鐘,學(xué)生思考回答,不足的地方教師補(bǔ)充和強(qiáng)調(diào)。)
四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實(shí)際問題的方法。五、目標(biāo)檢測設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長方形拼成,則每個(gè)小長方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計(jì)劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計(jì)一個(gè)長方形花圃,使它的面積比學(xué)校計(jì)劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.