2.采用比較簡便的方法,師生合作完成“數(shù)據(jù)的收集與整理(強調(diào)數(shù)據(jù)的準(zhǔn)確性),學(xué)生獨立完成“表格的填寫”。3.小組內(nèi)討論完成“表格的分析”。4.全班進行反饋。(意在培養(yǎng)獨立收集、整理數(shù)據(jù)的能力,核對數(shù)據(jù)的準(zhǔn)確性,并且擴大提問題的參與面,讓學(xué)生也能啟動智慧、享受快樂;及時反饋信息,調(diào)整教學(xué)目標(biāo))四、全課總結(jié)1.通過今天的學(xué)習(xí),同學(xué)們有哪些收獲?2.應(yīng)用延伸。(課本第112頁練習(xí)二十二第1題)五、布置作業(yè)教后反思統(tǒng)計是日常生產(chǎn)生活中常用和實用的工具,因此統(tǒng)計也是小學(xué)生必備的能力之一。但是統(tǒng)計的教學(xué)較為枯燥無味,教師往往會輕視統(tǒng)計的教學(xué),忽略學(xué)生能力方面的培養(yǎng)。在教學(xué)統(tǒng)計時,老師要激發(fā)學(xué)生學(xué)習(xí)統(tǒng)計的興趣,創(chuàng)造各種情景,加強學(xué)生統(tǒng)計中的動手實踐操作訓(xùn)練,同時在實際生活中加以運用,并逐步加大難度和密度,同時也需要知道,統(tǒng)計教學(xué)不要過分地浮夸,多給予學(xué)生統(tǒng)計的意義,使其明確學(xué)習(xí)的目的。
(4)列式計算:94—34=60(個)60—29=31(個)或34+29=63(個)94-63=31(個)讓學(xué)生列出綜合算式,要他們正確的使用小括號。列好后要求學(xué)生說出每一步表示的意義。94-34-29或94-(34+29)b.教科書第7頁練習(xí)一的第3題。讓學(xué)生自己分析題目的已知條件和問題,然后用兩種方法列式解答。58-6-7或58-(6+7)[第2題和第3題是配合例2設(shè)計的。教學(xué)時先讓學(xué)生說明圖意,然后思考要解決的問題。著重練習(xí)如何正確使用小括號,同時對學(xué)生進行環(huán)保意識的教育。]9.作業(yè)安排①.新型電腦公司有87臺電腦,上午賣出19臺,下午賣出26臺,還剩下多少臺?(用兩種方法解答)②.班級里有22張臘光紙,又買來27張。開聯(lián)歡會時用去38張,還剩下多少張?③.少年宮新購進小提琴52把,中提琴比小提琴少20把,兩種琴一共有多少把?④.一輛公共汽車?yán)镉?6位乘客,到福州路下去8位,又上來12位,這時車上有多少位?
第二種分法:分成三類:直角是一類,比直角小的分為一類,比直角的的又分為一類。2.討論交流,引導(dǎo)學(xué)生明確銳角和鈍角的意義。教師:比直角小的就是直角的弟弟,比直角的的就是它的哥哥。我們來為它們起個名字好嗎?讓學(xué)生充分交流后引導(dǎo)小結(jié):比直角小的叫銳角,比直角大的叫鈍角。相互討論:怎樣判斷一個角是不是銳角或鈍角?學(xué)生討論(得出和直角比、用眼睛看等方法)三、實踐應(yīng)用,鞏固提高1.完成練習(xí)九的第1、2題。2.畫一畫:請你分別畫出一個直角、銳角和鈍角。四、游戲活動1.折一折,比一比。讓學(xué)生利用身邊的材料折出不同的角,并互相認(rèn)一認(rèn)是什么角?2.摸摸、猜猜。(分小組活動)活動規(guī)則:把一同學(xué)眼睛蒙住,另一同學(xué)用活動角掰成大小不同的角,讓蒙住眼睛的同學(xué)通過手摸后說出是什么角?其他同學(xué)當(dāng)裁判。然后組內(nèi)同學(xué)交換活動。五、全課總結(jié)這節(jié)課我們學(xué)習(xí)了什么?你有哪些收獲?六、布置作業(yè)
1.動物園里舉行運動會,小動物可高興了,你瞧,他們排著整齊的隊伍走出來了。老師分步出示圖片,讓學(xué)生觀察,你發(fā)現(xiàn)了什么?第一步逐一貼出圖片;小熊、兔子、猴子、青蛙;第二步逐一貼出圖片:兔子、猴子、青蛙、小熊;第三步逐一貼出圖片:猴子、青蛙、小熊、兔子;第四步怎樣貼呢,學(xué)生試貼:青蛙、小熊、兔子、猴子。教師:為什么這樣貼呢?說出你的理由。2.觀察整幅方陣圖,你們發(fā)現(xiàn)了什么?3.請四個學(xué)生上臺問及此事,做類似方陣圖中動物的排列,四位同學(xué)不停的變換位置。(體會其中循環(huán)排列的含義)教師:深入觀察,你們還發(fā)現(xiàn)了什么?教師:剛才同學(xué)們用自己的語言形容出其中的排列規(guī)律;我們可以說這種排列方式是循環(huán)排列的規(guī)律。4.小東家搞裝修,房子是怎樣布置的呢?我們一起參觀參觀,有什么規(guī)律呢?學(xué)生討論講解:墻面與地面都是循環(huán)排列的規(guī)律。
師:同學(xué)們,在四年級的時候,我們已經(jīng)了解了圖形的密鋪,請你說一說,什么是圖形的密鋪?(沒有重疊、沒有空隙地鋪在平面上,就是密鋪。)師:圖形的密鋪又可以叫做鑲嵌,以上四個圖片,都是由哪些基本圖形密鋪(鑲嵌)而成的呢?(請學(xué)生邊指邊說。)師:還有哪些圖形也可以鑲嵌?(學(xué)生可能回答:三角形,平行四邊形,梯形,菱形,正六邊形,……)師:今天就請你發(fā)揮一下想象力,設(shè)計一些與眾不同的鑲嵌圖形。[設(shè)計意圖說明:學(xué)生在四年級已經(jīng)初步了解了圖形的密鋪(鑲嵌)現(xiàn)象,四幅圖片是四年級下冊教材《三角形》單元中《密鋪》內(nèi)容中的原圖。本單元在此基礎(chǔ)上,通過數(shù)學(xué)游戲拓展鑲嵌圖形的范圍,讓學(xué)生用圖形變換設(shè)計鑲嵌圖案,進一步感受圖形變換帶來的美感以及在生活中的應(yīng)用。]二、新授探究一:利用平移變換設(shè)計鑲嵌圖形
教后反思本節(jié)課給學(xué)生創(chuàng)設(shè)了良好的活動空間,把學(xué)生實際生活中聽說過的見到的平均分現(xiàn)象展示給學(xué)生看,把生活和數(shù)學(xué)聯(lián)系起來,在學(xué)生感受“同樣多”的基礎(chǔ)上概括出什么叫平均分。揭示平均分這一數(shù)學(xué)知識在生活中的應(yīng)用,之后突出了學(xué)生三次實際操作。第一次,小組同學(xué)互相分水果,重視學(xué)生分的結(jié)果。體會感受“平均分”的含義。第二次,重視分法:15個橘子平均分成5份。體現(xiàn)了學(xué)生對物品的不同分法,建立了平均分的概念。第三次,分礦泉水,通過份數(shù)變化,觀察分的就結(jié)果,深刻體會“平均分”,為認(rèn)識除法積累豐富的知識。為學(xué)生營造探索的空間。第二課時:平均分的認(rèn)識(二)教學(xué)內(nèi)容鞏固“平均分”。課本第15頁的例題3。教學(xué)目標(biāo)1.鞏固“平均分”的概念,知道平均分就是每一份分得結(jié)果同樣多。
因此,本套教材中刪去了“整除”的數(shù)學(xué)化定義,而是借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。在本冊教材中,由于允許學(xué)生采用多樣的方法求最大公因數(shù)和最小公倍數(shù),分解質(zhì)因數(shù)也失去了其不可或缺的作用,同時,也是為了減少這一單元的理論概念,教材不再把它作為正式教學(xué)內(nèi)容,而是作為一個補充知識,安排在“你知道嗎?”中進行介紹。由于這部分內(nèi)容較為抽象,很難結(jié)合生活實例或具體情境來進行教學(xué),學(xué)生理解起來有一定的難度。在過去的教學(xué)中,一些教師往往忽視概念的本質(zhì),而是讓學(xué)生死記硬背相關(guān)概念或結(jié)論,學(xué)生無法理清各概念間的前后承接關(guān)系,達不到融會貫通的程度。再加上有些教師在考核時使用一些偏題、難題,導(dǎo)致學(xué)生在學(xué)習(xí)這部分知識時覺得枯燥乏味,體會不到初等數(shù)論的抽象性、嚴(yán)密性和邏輯性,感受不到數(shù)學(xué)的魅力。所以在教學(xué)中應(yīng)注意以下兩點: (1)加強對概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。(2)由于本單元知識特有的抽象性,教學(xué)時要注意培養(yǎng)學(xué)生的抽象思維能力。
(1)提問:用自己的話說一說畫面的內(nèi)容。根據(jù)畫面的內(nèi)容編一道應(yīng)用題??上茸寣W(xué)生自由編題,然后出示:面包房一共做了54個面包,第一隊小朋友買了8個,第二隊小朋友買了22個,現(xiàn)在剩下多少個?(2)全班同學(xué)讀題后提問:題目的已知條件和問題分別是什么?根據(jù)“一共做了54個面包,第一隊小朋友買了8個”這兩個條件可以求什么?(第一隊買后還剩下多少個)怎樣列式?【54-8=46(個)】那要求還剩下多少個?又該怎樣列式?【46-22=24(個)】誰能列一個綜合算式?【54-8-22=24(個)】(列好后,要求學(xué)生說出每一步算式的意義)教師:大家想一想還有沒有不同的想法?(鼓勵學(xué)生從不同角度去思考問題)根據(jù)“第一隊小朋友買了8個,第二隊小朋友買了22個”可以求出什么問題?(兩隊一共買了多少個面包?)可以怎樣列式?【8+22=30(個)】那要求還剩下多少個?又該怎樣列式?【54-30=24(個)】同桌的同學(xué)互相討論一下:如果寫成一個算式,應(yīng)該怎樣列式?
1.自學(xué)文本出示書中情境圖:有21架飛機要參加飛行表演,怎樣飛呢?想請同學(xué)們幫忙設(shè)計編組方案,下面小組同學(xué)合作,用學(xué)具擺一擺,設(shè)計出自己的編組方案,看哪個小組設(shè)計的方案最多?學(xué)生小組合作,邊擺學(xué)具邊說方案。2.交流研討哪組想到前面來匯報一下你們制定的飛行方案?(不必強調(diào)平均分,如有小組同學(xué)說出每組有7(3)架,可以分成3(7)組,或每7(3)架一組,可以分成3(7)組,老師在給予肯定的同時可以問其它小組擺法一樣嗎?之后板書算式:21÷7=3,21÷3=7。如果學(xué)生沒說出平均分,老師可引導(dǎo)說:有時表演的每組也可同樣多)
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴(yán)格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
四、范例學(xué)習(xí)、理解領(lǐng)會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當(dāng)乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學(xué)生畫圖、 實驗、觀察、探索。五、隨堂練習(xí)課本隨堂練習(xí) 學(xué)生觀察、畫圖、合作交流。六、課堂總結(jié)本節(jié)課通過各種實踐活動,促進大家對內(nèi)容的理解,本課內(nèi)容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.
三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時,是一元二次方程,當(dāng)m__________時,是一元一次方程。四、學(xué)習(xí)體會:五、課后作業(yè)
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結(jié)論:從上面的試驗可以看到:當(dāng)重復(fù)實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過大量重復(fù)實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設(shè)黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當(dāng)摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設(shè)計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當(dāng)實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
解:方法一:因為DE∥BC,所以∠ADE=∠B,∠AED=∠C,所以△ADE∽△ABC,所以ADAB=DEBC,即44+8=5BC,所以BC=15cm.又因為DF∥AC,所以四邊形DFCE是平行四邊形,所以FC=DE=5cm,所以BF=BC-FC=15-5=10(cm).方法二:因為DE∥BC,所以∠ADE=∠B.又因為DF∥AC,所以∠A=∠BDF,所以△ADE∽△DBF,所以ADDB=DEBF,即48=5BF,所以BF=10cm.方法總結(jié):求線段的長,常通過找三角形相似得到成比例線段而求得,因此選擇哪兩個三角形就成了解題的關(guān)鍵,這就需要通過已知的線段和所求的線段分析得到.三、板書設(shè)計(1)相似三角形的定義:三角分別相等、三邊成比例的兩個三角形叫做相似三角形;(2)相似三角形的判定定理1:兩角分別相等的兩個三角形相似.感受相似三角形與相似多邊形、相似三角形與全等三角形的區(qū)別與聯(lián)系,體驗事物間特殊與一般的關(guān)系.讓學(xué)生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生的觀察、動手探究、歸納總結(jié)的能力.
合探2 與同伴合作,兩個人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時,∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個三角形相似.這個定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點,DE∥BC,AB= 7,AD=5,DE=10,求B C的長。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個銳角相等的兩個直角三角形是否相似?為什么?2.自己獨立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個定理.七、作業(yè):
同理,圖③中,三角形的三邊長分別為2,5,3;同理,圖④中,三角形的三邊長分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個圖形中的三角形均為格點三角形,可以根據(jù)勾股定理求出各邊的長,然后根據(jù)三角形三邊的長度是否成比例來判斷兩個三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長按大小順序排列,然后分別計算他們對應(yīng)邊的比,最后由比值是否相等來確定兩個三角形是否相似.三、板書設(shè)計相似三角形的判定定理3:三邊成比例的兩個三角形相似.從學(xué)生已學(xué)的知識入手,通過設(shè)置問題,引導(dǎo)學(xué)生進行計算、推理和歸納,提高分析問題和解決問題的能力.感受兩個三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實驗探究到歸納證明的過程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì).