本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對(duì)稱變換,充分體現(xiàn)對(duì)稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會(huì) 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號(hào)看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力。
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個(gè)實(shí)例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對(duì)應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會(huì)求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個(gè)實(shí)例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運(yùn)算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運(yùn)用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實(shí)際問題中抽象概括出函數(shù)概念的活動(dòng),培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點(diǎn):函數(shù)的概念,函數(shù)的三要素。難點(diǎn):函數(shù)概念及符號(hào)y=f(x)的理解。
1、課本第14頁的”做一做”。通過練習(xí),一方面是讓學(xué)生用剛學(xué)到的知識(shí)進(jìn)行改寫,進(jìn)一步鞏固了新知;一方面回憶過去提供的有關(guān)地理知識(shí)素材,使學(xué)生了解我國的地理知識(shí),擴(kuò)大視野。2、課本練習(xí)二的第3題。第3題的素材介紹了我國主要的農(nóng)產(chǎn)品,可以擴(kuò)大學(xué)生的知識(shí)面。在改寫之后還要求學(xué)生進(jìn)行大數(shù)的比較,對(duì)兩部分知識(shí)進(jìn)行混合練習(xí)。3、課文練習(xí)二的第4~5題。第4題是關(guān)于近似數(shù)的聯(lián)系,通過準(zhǔn)確數(shù)與近似數(shù)的對(duì)比,區(qū)分聯(lián)系,題會(huì)在什么情況下使用準(zhǔn)確數(shù),在什么情況下使用近似數(shù),使學(xué)生進(jìn)一步理解近似數(shù)的含義和在實(shí)際生活中的作用。第5題是關(guān)于我國第五次人口普查中6個(gè)省份的人口數(shù)。讓學(xué)生求出這些數(shù)的近似訴,并提示學(xué)生在可能的情況下通過互連網(wǎng)等媒體了解其他地區(qū)的人口數(shù)。同時(shí)還介紹了我國每十年進(jìn)行一次人口普查的知識(shí)。
六、教學(xué)反思 從這節(jié)課的實(shí)施情況看,課堂實(shí)施與原先的公開課教案是比較一致的,效果也是比較好的,主要體現(xiàn)于以下兩點(diǎn): 1、效果得益于“跳出”--跳出教材框框 剛開始備課和試教時(shí),我打算充沛利用教材,根據(jù)教材上的內(nèi)容出示幻燈片讓同學(xué)說一說,但一節(jié)課下來顯得很單調(diào)、信息量很少,體現(xiàn)不出生活中數(shù)的味道。于是我開放教材,跳出教材的框框,課前安排一個(gè)“找生活中的數(shù)”實(shí)踐活動(dòng)把同學(xué)放到社會(huì)生活之林中去,讓他們先找些“野食”吃。這樣,課前在準(zhǔn)備過程當(dāng)中積累的素材多了,同學(xué)的學(xué)習(xí)效益大大提高了。同學(xué)在豐富多彩的實(shí)際生活中自由自在地采擷自身感興趣的“果子”,他們采來的“果子”是絢麗多姿的,然后回到課堂交流,共享到了“果子”的豐富,起到“以一當(dāng)數(shù)十”的作用。 這個(gè)“跳出”戰(zhàn)略,體現(xiàn)了現(xiàn)代科學(xué)“系統(tǒng)論”的理論。系統(tǒng)論認(rèn)為:系統(tǒng)只有開放,不時(shí)吸收外界的信息,才干使自身“有序”。
《貼郵票》活動(dòng)要求:A、每組4人,給四封不同地點(diǎn)、質(zhì)量的信件B、根據(jù)信封上的信息計(jì)算郵費(fèi)并按要求貼上郵票(郵票的總面值剛好等于郵費(fèi),不能多貼)每封信最多貼三張郵票,只有0.8元或1.2元的兩種郵票紀(jì)律要求:看看哪組合作得最好,速度最快!如果遇到困難,在事發(fā)那個(gè)在一邊最后再去解決。3、小組匯報(bào)(1)、貼郵票的過程中大家遇到了什么問題?(有的能貼有的不能貼)這樣的信件有哪些?(告訴我地點(diǎn)、質(zhì)量、郵費(fèi))(2)、其他的信件都能貼出來嘛?說說看你是怎么貼郵票的?(3)、請(qǐng)將你們貼好郵票的信件送到郵箱來。剩下的都是一些“難題”(4)、思考:為什么4.0元、4.8元、6元的郵費(fèi)沒有辦法按要求貼出郵票?(5)、原因出在哪里?這個(gè)問題怎么解決?(郵票面值太小,將郵票的面值改大)(6)、那最少要改成多大的?為什么?(將郵票面值改大,你會(huì)從多大面值的郵票開始考慮?為什么?)
1.從監(jiān)測的范圍、速度,人力和財(cái)力的投入等方面看,遙感具有哪些特點(diǎn)?點(diǎn)撥:范圍更廣、速度更快、需要人力更少 、財(cái)力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點(diǎn)撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當(dāng)于傳感器。課堂小結(jié):遙感技術(shù)是國土整治和區(qū)域發(fā)展研究中應(yīng)用較廣的技術(shù) 手段之一,我國在這個(gè)領(lǐng)域已經(jīng)走在了世界的前列。我國的大部分土地已經(jīng)獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國土資源衛(wèi)星,自行研制發(fā)射了“風(fēng)云”衛(wèi)星。遙感技術(shù)為我國自然資源開發(fā)與利用提供 了大量的有用的資料,在我國農(nóng)業(yè)估產(chǎn)、災(zāi)害監(jiān)測 、礦產(chǎn)勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設(shè)計(jì)§1.2地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用
(4)假如你是110指揮中心的調(diào)度員,描述在接到報(bào)警電話到指揮警車前往出事地點(diǎn)的工作程序。點(diǎn)撥:接警→確認(rèn)出事地點(diǎn)的位置→(在顯示各巡警車的地理信息系統(tǒng)中)了解其周圍巡警車的位置→分析確定最近(或能最快到達(dá))的巡警車→通知該巡警車。(5)由此例推想,地理信息技術(shù)還可以應(yīng)用于城市管理的哪些部門中?點(diǎn)撥:城市交通組織和管理、商業(yè)組織和管理、城市規(guī)劃、衛(wèi)生救護(hù)、物流等部門,都可利用地理信息技術(shù)?!菊n堂小結(jié)】現(xiàn)代地理學(xué)中,3S技術(shù)學(xué)科的發(fā)展與應(yīng)用,日益成為地理學(xué)前沿科學(xué)研究的重要領(lǐng)域,并成為地理學(xué)服務(wù)于社會(huì)生產(chǎn)的主要途徑,現(xiàn)在3S技術(shù)已經(jīng)廣泛應(yīng)用于社會(huì)的各個(gè)領(lǐng)域。它們?nèi)呒扔蟹止び钟新?lián)系。遙感技術(shù)主要用于地理信息數(shù)據(jù)的獲取,全球定位系統(tǒng)主要用于地理信息的空間定位,地理信息系統(tǒng)主要用來對(duì)地理信息數(shù)據(jù)的管理、更新、分析等。
4、實(shí)際生活中的應(yīng)用。提問學(xué)生:小數(shù)點(diǎn)位置移動(dòng)引起小數(shù)大小的變化這規(guī)律在學(xué)習(xí)和生活有什么應(yīng)用?(讓學(xué)生思考在學(xué)習(xí)中,點(diǎn)錯(cuò)小數(shù)點(diǎn)的位置,小數(shù)的大小就不一樣了。如果在銀行統(tǒng)計(jì)時(shí)點(diǎn)錯(cuò)右漏寫小數(shù)點(diǎn)會(huì)怎樣?)教育學(xué)生做事認(rèn)真細(xì)心。(四)小結(jié)質(zhì)疑,自我評(píng)價(jià)這節(jié)課我們學(xué)習(xí)了什么?小數(shù)點(diǎn)位置移動(dòng)引起小數(shù)大小的變化規(guī)律是怎樣的?質(zhì)疑:對(duì)今天的學(xué)習(xí)還有什么疑問嗎?(培養(yǎng)學(xué)生敢于質(zhì)疑,勇于創(chuàng)新的精神)評(píng)價(jià):首先自評(píng),學(xué)生對(duì)自己學(xué)得怎樣,用什么方法學(xué)習(xí),印象最深的內(nèi)容是什么進(jìn)行評(píng)介。接著可以生生互評(píng)或師生互評(píng),教師重點(diǎn)表揚(yáng)大部分學(xué)得好的同學(xué)或全班的同學(xué),增強(qiáng)學(xué)生的自信心和榮譽(yù)感,使他們更加熱愛數(shù)學(xué)。(五)作業(yè)布置:1、回憶一遍操作探索發(fā)現(xiàn)規(guī)律的整個(gè)過程,進(jìn)一步培養(yǎng)學(xué)生良好的學(xué)習(xí)方法和習(xí)慣。2、預(yù)習(xí)97頁,例2和例3,做書上98頁練習(xí)第三題。
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱軸或與對(duì)稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
(三)實(shí)踐性數(shù)學(xué)是一種工具,一種將自然、社會(huì)運(yùn)動(dòng)現(xiàn)象法則化、簡約化的工具。數(shù)學(xué)學(xué)習(xí)的最重要的成果就是學(xué)會(huì)建立數(shù)學(xué)模型,用以解決實(shí)際問題。因此,在這節(jié)課中,大量地創(chuàng)設(shè)條件,讓學(xué)生把課堂中所學(xué)的知識(shí)和方法應(yīng)用于生活實(shí)際之中,“學(xué)以致用”,讓學(xué)生切實(shí)感受到生活中處處有數(shù)學(xué)。如上課伊始的猜冰箱,課中觀察玩具、用品,給熊貓照相等,都采用了貼近學(xué)生生活的材料,旨在聯(lián)系生活,開闊視野,同時(shí)延伸學(xué)習(xí),使學(xué)生能從看到的物體的某一個(gè)面,聯(lián)想到整個(gè)物體的形狀,培養(yǎng)其觀察立體實(shí)物的能力,建立初步的空間觀念,發(fā)展形象思維。本課的所有教學(xué)環(huán)節(jié)都注重借助學(xué)生生活中常見的事物為知識(shí)載體,意在讓學(xué)生感悟到“數(shù)學(xué)就在我們身邊,生活離不開數(shù)學(xué)”。二、需進(jìn)一步探究的問題“觀察物體”的內(nèi)容主要是對(duì)簡單物體正面、側(cè)面、上面形狀的觀察,因此本節(jié)課選擇了大量生活中的實(shí)物讓學(xué)生觀察,旨在培養(yǎng)學(xué)生的空間觀念。
自主探究法:教學(xué)中強(qiáng)調(diào)以學(xué)生為主體,強(qiáng)調(diào)學(xué)生參與知識(shí)的形成過程,始終做到為學(xué)生提供充足的學(xué)習(xí)素材、創(chuàng)設(shè)充分學(xué)習(xí)的空間、時(shí)間,讓學(xué)生自主探究,體驗(yàn)知識(shí)形成的過程,培養(yǎng)主動(dòng)探究的能力。觀察法:例1觀察物體教學(xué)中的觀察是很好的學(xué)習(xí)方法。例如,教學(xué)例1時(shí),觀察目的明確。教師通過讓學(xué)生觀察長方體物體學(xué)會(huì)從不同角度觀察物體的方法。這一安排不僅給學(xué)生獨(dú)立思考的機(jī)會(huì),而且教給學(xué)生觀察的思維方法。四、說教學(xué)程序在提出問題中,引發(fā)學(xué)生思考;在自主探索中,激發(fā)學(xué)生創(chuàng)新思維;在展示交流中,感受學(xué)生的個(gè)性;在總結(jié)陳述中,體驗(yàn)成功的樂趣;在聯(lián)想記憶中進(jìn)一步發(fā)揮學(xué)生的創(chuàng)造才能。在設(shè)計(jì)這節(jié)課時(shí),我在尊重教材的基礎(chǔ)上,力求體現(xiàn)新課標(biāo)的新理念、新思想,導(dǎo)學(xué)案中設(shè)計(jì)了以下幾個(gè)教學(xué)環(huán)節(jié):
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對(duì)稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個(gè)焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個(gè)焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對(duì)稱性:關(guān)于x軸、y軸、原點(diǎn)對(duì)稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
一、教材分析:《名數(shù)的改寫》是四年級(jí)下冊(cè)小數(shù)的意義和性質(zhì)的內(nèi)容。該內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了利用小數(shù)點(diǎn)位置移動(dòng)引起小數(shù)的大小變化規(guī)律的基礎(chǔ)上進(jìn)行教學(xué)的。本信息窗呈現(xiàn)的是一只天鵝從出生到長大體重變化的情況。圖中用文字標(biāo)出了具體的變化數(shù)據(jù)。主要通過引導(dǎo)學(xué)生解答天鵝體重變化的問題,讓學(xué)生體會(huì)到單位不相同,必須改寫成相同的單位,展開對(duì)名數(shù)改寫知識(shí)的學(xué)習(xí)。二、教學(xué)目標(biāo)根據(jù)上述對(duì)教材的分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我確立了本課的教學(xué)目標(biāo)為:知識(shí)與技能方面:會(huì)利用移動(dòng)小數(shù)點(diǎn)的位置來進(jìn)行名數(shù)改寫。理解知識(shí)間聯(lián)系,提高學(xué)生運(yùn)用所學(xué)知識(shí)解決問題的能力。過程與方法方面:利用小數(shù)點(diǎn)位置移動(dòng)引起小數(shù)大小變化的規(guī)律和名數(shù)改寫的基本方法,引導(dǎo)學(xué)生進(jìn)行知識(shí)遷移,從而掌握利用小數(shù)點(diǎn)的位置移動(dòng)進(jìn)行名數(shù)改寫的方法。
二、探究新知一、點(diǎn)到直線的距離、兩條平行直線之間的距離1.點(diǎn)到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點(diǎn),P是直線l外一點(diǎn).設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點(diǎn)P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點(diǎn)P,則兩條平行直線間的距離就等于點(diǎn)P到直線m的距離.點(diǎn)睛:點(diǎn)到直線的距離,即點(diǎn)到直線的垂線段的長度,由于直線與直線外一點(diǎn)確定一個(gè)平面,所以空間點(diǎn)到直線的距離問題可轉(zhuǎn)化為空間某一個(gè)平面內(nèi)點(diǎn)到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點(diǎn),則點(diǎn)A到直線EF的距離為 . 答案: √174/6解析:如圖,以點(diǎn)D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.
一、情境導(dǎo)學(xué)我國著名數(shù)學(xué)家吳文俊先生在《數(shù)學(xué)教育現(xiàn)代化問題》中指出:“數(shù)學(xué)研究數(shù)量關(guān)系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點(diǎn)是排除了數(shù)量關(guān)系,對(duì)于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關(guān)系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學(xué)幾何的“騰飛”是“數(shù)量化”,也就是坐標(biāo)系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標(biāo)及其運(yùn)算.二、探究新知一、空間直角坐標(biāo)系與坐標(biāo)表示1.空間直角坐標(biāo)系在空間選定一點(diǎn)O和一個(gè)單位正交基底{i,j,k},以點(diǎn)O為原點(diǎn),分別以i,j,k的方向?yàn)檎较?、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標(biāo)軸.這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系Oxyz,O叫做原點(diǎn),i,j,k都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為Oxy平面,Oyz平面,Ozx平面.
∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點(diǎn)為焦點(diǎn),且經(jīng)過點(diǎn)(3,√10);(3)a=b,經(jīng)過點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡單的問題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
教學(xué)重點(diǎn):1.比較分析地理環(huán)境差異對(duì)區(qū)域發(fā)展的影響2.分析區(qū)域不同發(fā)展階段地理環(huán)境的影響教學(xué)難點(diǎn):1.區(qū)域的特征2.以兩個(gè)區(qū)域?yàn)槔容^分析地理環(huán)境差異對(duì)區(qū)域發(fā)展的影響教具準(zhǔn)備:有關(guān)掛圖等、自制圖表等教學(xué)方法:比較法、案例分析法、圖示法等教學(xué)過程:一、區(qū)域1.概念:區(qū)域是地球表面的空間單位,它是人們?cè)诘乩聿町惖幕A(chǔ)上,按一定的指標(biāo)和方法劃分出來的。2.特征:(1)區(qū)域具有一定的區(qū)位特征:不同的區(qū)域,自然環(huán)境有差異,人類活動(dòng)也有差異。同一區(qū)域,區(qū)域內(nèi)部的特定性質(zhì)相對(duì)一致,如濕潤區(qū)的多年平均降水量都在800毫米以上。但自然環(huán)境對(duì)人類活動(dòng)的影響隨著其他條件的變化而不同。(2)具有一定的面積、形狀和邊界。①有的區(qū)域的邊界是明 確的,如行政區(qū);②有的區(qū)域的邊界具有過渡性質(zhì),如干濕地區(qū)。