提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中歷史必修2發(fā)達(dá)的古代農(nóng)業(yè)教案2篇

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    二、說學(xué)情本課的教學(xué)對象為高二學(xué)生,他們思維活躍已具備一定歸納能力和分析、綜合能力,能夠自主地分析現(xiàn)實(shí)生活中的一些文化行為,但看問題往往比較偏激、片面,缺乏良好的邏輯思維能力。所以,在文化創(chuàng)新的途徑上要對他們進(jìn)行指導(dǎo),以免走入誤區(qū)。三、教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)、教材特點(diǎn)、學(xué)生的實(shí)際,我確定了如下教學(xué)目標(biāo):【知識(shí)與能力目標(biāo)】1.理解文化創(chuàng)新的根本途徑和兩個(gè)基本途徑;2.了解文化創(chuàng)新過程中需要堅(jiān)持正確方向,克服錯(cuò)誤傾向。

  • 人教版高中政治必修4真正的哲學(xué)都是自己時(shí)代的精神上的精華說課稿

    人教版高中政治必修4真正的哲學(xué)都是自己時(shí)代的精神上的精華說課稿

    2、講授新課:(35分鐘)通過教材第一目的講解,讓學(xué)生明白,生活和學(xué)習(xí)中有許多蘊(yùn)涵哲學(xué)道理的故事,表明哲學(xué)并不神秘總結(jié)并過渡:生活也離不開哲學(xué),哲學(xué)可以是我正確看待自然、人生、和社會(huì)的發(fā)展,從而指導(dǎo)人們正確的認(rèn)識(shí)和改造世界。整個(gè)過程將伴隨著多媒體影像資料和生生對話討論以提高學(xué)生的積極性。3、課堂反饋,知識(shí)遷移。最后對本科課進(jìn)行小結(jié),鞏固重點(diǎn)難點(diǎn),將本課的哲學(xué)知識(shí)遷移到與生活相關(guān)的例子,實(shí)現(xiàn)對知識(shí)的升華以及學(xué)生的再次創(chuàng)新;可使學(xué)生更深刻地理解重點(diǎn)和難點(diǎn),為下一框?qū)W習(xí)做好準(zhǔn)備。4、板書設(shè)計(jì)我采用直觀板書的方法,對本課的知識(shí)網(wǎng)絡(luò)在多媒體上進(jìn)行展示。盡可能的簡潔,清晰。使學(xué)生對知識(shí)框架一目了然,幫助學(xué)生構(gòu)建本課的知識(shí)結(jié)構(gòu)。5、布置作業(yè)我會(huì)留適當(dāng)?shù)淖詼y題及教學(xué)案例讓同學(xué)們做課后練習(xí)和思考,檢驗(yàn)學(xué)生對本課重點(diǎn)的掌握以及對難點(diǎn)的理解。并及時(shí)反饋。對學(xué)生在理解中仍有困難的知識(shí)點(diǎn),我會(huì)在以后的教學(xué)中予以疏導(dǎo)。

  • 人教版新課標(biāo)高中物理必修1用牛頓運(yùn)動(dòng)定律解決問題(二)說課稿2篇

    人教版新課標(biāo)高中物理必修1用牛頓運(yùn)動(dòng)定律解決問題(二)說課稿2篇

    教師活動(dòng):(1)組織學(xué)生回答相關(guān)結(jié)論,小組之間互相補(bǔ)充評(píng)價(jià)完善。教師進(jìn)一步概括總結(jié)。(2)對學(xué)生的結(jié)論予以肯定并表揚(yáng)優(yōu)秀的小組,對不理想的小組予以鼓勵(lì)。(3)多媒體投放板書二:超重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?大于物體所受到的重力的情況稱為超重現(xiàn)象。實(shí)質(zhì):加速度方向向上。失重現(xiàn)象:物體對支持物的壓力(或?qū)覓煳锏睦?小于物體所受到的重力的情況稱為失重現(xiàn)象。實(shí)質(zhì):加速度方向向下。(4)運(yùn)用多媒體展示電梯中的現(xiàn)象,引導(dǎo)學(xué)生在感性認(rèn)識(shí)的基礎(chǔ)上進(jìn)一步領(lǐng)會(huì)基本概念。4.實(shí)例應(yīng)用,結(jié)論拓展:教師活動(dòng):展示太空艙中宇航員的真實(shí)生活,引導(dǎo)學(xué)生應(yīng)用本節(jié)所學(xué)知識(shí)予以解答。學(xué)生活動(dòng):小組討論后形成共識(shí)。教師活動(dòng):(1)引導(dǎo)學(xué)生分小組回答相關(guān)問題,小組間互相完善補(bǔ)充,教師加以規(guī)范。(2)指定學(xué)生完成導(dǎo)學(xué)案中“思考與討論二”的兩個(gè)問題。

  • xx市綠色農(nóng)業(yè)投資開發(fā)有限公司2024上半工作總結(jié)和下半年工作計(jì)劃

    xx市綠色農(nóng)業(yè)投資開發(fā)有限公司2024上半工作總結(jié)和下半年工作計(jì)劃

    謀劃專項(xiàng)債項(xiàng)目9個(gè),其中:重點(diǎn)項(xiàng)目2個(gè),總投資68.6億元。目前,已完成9個(gè)項(xiàng)目的立項(xiàng)、財(cái)政儲(chǔ)備庫入庫等工作;2個(gè)重點(diǎn)項(xiàng)目已完成立項(xiàng)、可研批復(fù)、財(cái)政評(píng)審、“三評(píng)一案”編制等工作。(五)做好土地種植方面探索,為農(nóng)業(yè)標(biāo)準(zhǔn)化生產(chǎn),土地規(guī)?;鬓D(zhuǎn)摸清道路應(yīng)對市場變化,探索種植紅纓子高粱、泛麥8號(hào)等優(yōu)質(zhì)農(nóng)作物的種植推廣工作。積極與上游終端企業(yè)聯(lián)合合作,打通產(chǎn)業(yè)鏈終端,擴(kuò)大訂單種植,提升技術(shù)含量,增加比較效益,形成區(qū)域特色,在鞏固原有托管土地面積的前提下,不斷探索新的多元化合作、管理模式探索路子。(七)穩(wěn)步推進(jìn)億嘉問題樓盤建設(shè)積極申報(bào)“保交樓”項(xiàng)目資金,妥善化解xx問題樓盤遺留問題,確保群眾利益。(八)積極圍繞白芝麻、強(qiáng)弱筋小麥、紅高粱等特色農(nóng)產(chǎn)品種植、深加工項(xiàng)目進(jìn)行謀劃,為打造優(yōu)質(zhì)農(nóng)產(chǎn)品和有機(jī)農(nóng)業(yè)品牌不斷努力

  • 拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時(shí)為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個(gè)焦點(diǎn)F_1上,片門位另一個(gè)焦點(diǎn)F_2上,由橢圓一個(gè)焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個(gè)橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時(shí),通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時(shí)常用的關(guān)系式有b2=a2-c2等.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 人教版高中地理必修3森林的開發(fā)和保護(hù)—以亞馬孫熱帶雨林為例說課稿

    人教版高中地理必修3森林的開發(fā)和保護(hù)—以亞馬孫熱帶雨林為例說課稿

    【這部分的設(shè)計(jì)目的,要學(xué)生明白熱帶雨林只是一個(gè)案例,我們的目的是要合理開發(fā)和保護(hù)全世界的森林。由森林的開發(fā)與保護(hù)來明確區(qū)域發(fā)展過程中產(chǎn)生的環(huán)境問題,危害及治理保護(hù)措施?!咳缓笾R(shí)遷移——東北林區(qū)的開發(fā)與保護(hù)介紹東北地區(qū)的森林材料:東北林區(qū)是我國最大的天然林區(qū),主要分布于大、小興安嶺及長白山地,在平衡大氣成分、凈化空氣、補(bǔ)給土壤有機(jī)質(zhì)、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問題及影響點(diǎn)撥:由于人類的嚴(yán)重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災(zāi),東北林區(qū)的面積在銳減,帶來了嚴(yán)重的生態(tài)惡化。我們該如何開發(fā)和保護(hù)東北地區(qū)的森林呢?

  • 人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一充分條件與必要條件教學(xué)設(shè)計(jì)(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因?yàn)閜是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實(shí)數(shù)a的取值范圍.【答案】見解析【解析】因?yàn)椤皒∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識(shí)及解題技巧

  • 人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一等式性質(zhì)與不等式性質(zhì)教學(xué)設(shè)計(jì)(2)

    等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實(shí)生活中有著廣泛的應(yīng),有著重要的實(shí)際意義.同時(shí)等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標(biāo)1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運(yùn)用其解決簡單的問題.2. 進(jìn)一步掌握作差、作商、綜合法等比較法比較實(shí)數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識(shí)和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運(yùn)算:比較多項(xiàng)式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項(xiàng)式的取值范圍,許將單項(xiàng)式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運(yùn)用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。

  • 人教A版高中數(shù)學(xué)必修一全稱量詞與存在量詞教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一全稱量詞與存在量詞教學(xué)設(shè)計(jì)(2)

    (4)“不論m取何實(shí)數(shù),方程x2+2x-m=0都有實(shí)數(shù)根”是全稱量詞命題,其否定為“存在實(shí)數(shù)m0,使得方程x2+2x-m0=0沒有實(shí)數(shù)根”,它是真命題.解題技巧:(含有一個(gè)量詞的命題的否定方法)(1)一般地,寫含有一個(gè)量詞的命題的否定,首先要明確這個(gè)命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應(yīng)結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時(shí)否定結(jié)論.(2)對于省略量詞的命題,應(yīng)先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓(xùn)練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個(gè)實(shí)數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿

    人教版高中政治必修3思想道德修養(yǎng)與科學(xué)文化修養(yǎng)說課稿

    由此引導(dǎo)學(xué)生的深思,學(xué)生通過合作探究,幫助學(xué)生認(rèn)識(shí)到不注重思想道德修養(yǎng),即使掌握了豐富的科學(xué)知識(shí),也難以避免人格上的缺失,甚至危害社會(huì)。進(jìn)而總結(jié)出關(guān)系二:加強(qiáng)思想道德修養(yǎng),能夠促進(jìn)科學(xué)文化修養(yǎng)??茖W(xué)文化修養(yǎng)的意義播放感動(dòng)中國人物徐本禹先進(jìn)事跡短片。學(xué)生觀看完視頻后,思考:從徐本禹的事跡中,我們可以了解到我們加強(qiáng)科學(xué)文化修養(yǎng)的根本意義是什么?引導(dǎo)學(xué)生結(jié)合自身體會(huì),發(fā)表各自見解,在此基礎(chǔ)上幫助學(xué)生總結(jié)出,要使自己的思想道德境界不斷升華,為人民服務(wù)的本領(lǐng)不斷提高,成為一個(gè)真正有知識(shí)文化涵養(yǎng)的人,成為一個(gè)脫離低級(jí)趣味的人、有益于人民的人。知識(shí)點(diǎn)三:追求更高的思想道德目標(biāo)根據(jù)教材110探究活動(dòng)(思想道德的差異、反應(yīng)人們世界觀、人生觀、價(jià)值觀的差異)思考:用公民的基本道德規(guī)范來衡量這些觀點(diǎn),你贊成哪些觀點(diǎn)?反對哪些觀點(diǎn)?小組進(jìn)行合作探究,引導(dǎo)學(xué)生根據(jù)公民基本道德規(guī)范對這些價(jià)值觀進(jìn)行評(píng)析。

  • 人教版高中政治必修3思想道德修養(yǎng)與知識(shí)文化修養(yǎng)說課稿

    人教版高中政治必修3思想道德修養(yǎng)與知識(shí)文化修養(yǎng)說課稿

    1.做學(xué)問之前首先學(xué)會(huì)做人2.知識(shí)文化修養(yǎng)和思想道德修養(yǎng)的關(guān)系三.追求更高的思想道德目標(biāo)㈤ 說教學(xué)評(píng)價(jià)和反思:1.這節(jié)課主要是以學(xué)生為主體,老師為主導(dǎo),讓學(xué)生充分發(fā)表自己的看法,把理論的知識(shí)結(jié)合在實(shí)際的日常生活中,鼓勵(lì)學(xué)生充分發(fā)表自己的意見,能調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,達(dá)到教學(xué)目的。這節(jié)課學(xué)生討論,發(fā)言的機(jī)會(huì)很多,但由于我校的學(xué)生的基礎(chǔ)薄弱,在發(fā)言時(shí)難免偏離老師引導(dǎo)的方向,甚至出現(xiàn)毫不相干的說法,由于本人經(jīng)驗(yàn)不夠此時(shí)如何去引導(dǎo)他們可能做的還不夠好。2.新課程的教學(xué),如何突破書本知識(shí)的局限,延伸更深層次的內(nèi)容是一個(gè)難題。本節(jié)課在知識(shí)的處理上,把道德的重要性與道德的層次兩個(gè)知識(shí)點(diǎn)補(bǔ)充了進(jìn)去,目的是讓學(xué)生在學(xué)習(xí)之前有一個(gè)情感的鋪墊,從而更好地達(dá)到教學(xué)目標(biāo)。

  • 新人教版高中英語必修3Unit 1 Festivals and Celebrations-Reading for writing教學(xué)設(shè)計(jì)二

    新人教版高中英語必修3Unit 1 Festivals and Celebrations-Reading for writing教學(xué)設(shè)計(jì)二

    Step 3 Analyzing article structureActivity 31. Teachers raise questions to guide students to analyze the chapter structure of this diary and think about how to describe the festival experience. (1)What should be included in the opening/body/closing paragraph(s)?(2)How did the writer arrange his/her ideas?(3)What kind of interesting details did the writer describe?(4)How did the writer describe his/her feelings/emotions during the event?2. Students read and compare the three sentence patterns in activity 2. Try to rewrite the first paragraph of the diary with these three sentence patterns. After that, students exchange corrections with their partners. Such as:●This was my first time spending three days experiencing the Naadam Festival in China’s Inner Mongolia Autonomous Region and it was an enjoyable and exciting experience. ●I'll never forget my experience at the Naadam Festival because it was my first time to watch the exciting Mongolian games of horse racing, wrestling, and archery so closely. ●I'll always remember my first experience at the Naadam Festival in China’s Inner Mongolia Autonomous Region because it was so amazing to spend three days witnessing a grand Mongolian ceremony. Step 4 Accumulation of statementsActivity 41. Ask the students to read the diary again. Look for sentences that express feelings and emotions, especially those with the -ing form and the past participle. Such as:● …h(huán)orse racing, wrestling, and archery, which are all so exciting to watch. ● some amazing performances● I was surprised to see…● I was a little worried about. . . ● feeling really tiredOther emotional statements:●I absolutely enjoyed the archery, too, but the horse races were my favourite part. ●I'm finally back home now, feeling really tired, but celebrating Naadam with my friend was totally worth it. ●He invited me back for the winter to stay in a traditional Mongolian tent and cat hot pot. I can’t wait!2. In addition to the use of the -ing form and the past participle, the teacher should guide the students in the appreciation of these statements, ask them to memorize them, and encourage them to use them reasonably in writing practice.

  • 新人教版高中英語必修3Unit 3 Diverse Cultures-Reading and Thinking教學(xué)設(shè)計(jì)

    新人教版高中英語必修3Unit 3 Diverse Cultures-Reading and Thinking教學(xué)設(shè)計(jì)

    Discuss these questions in groups.Q1: Have you ever been to a place that has a diverse culture ? What do you think about the culture diversity ?One culturally diverse place that I have been to is Harbin, the capital city of Heilongjiang Province. I went there last year with my family to see the Ice and Snow Festival, and I was amazed at how the culture as different to most other Chinese cities. There is a big Russian influence there, with beautiful Russian architecture and lots of interesting restaurants. I learnt that Harbin is called “the Oriental Moscow” and that many Russians settled there to help build the railway over 100 years ago.Q2: What are the benefits and challenges of cultural diversity ?The benefits: People are able to experience a wide variety of cultures, making their lives more interesting, and it can deepen the feelings for our national culture, it is also helpful for us to learn about other outstanding culture, which helps improve the ability to respect others. The challenges: People may have trouble communicating or understanding each other, and it may lead to disappearance of some civilizations and even make some people think “The western moon is rounder than his own.”Step 7 Post reading---RetellComplete the passage according to the text.Today, I arrived back in San Francisco, and it feels good (1) _____(be) back in the city again. The city succeeded in (2)_________ (rebuild) itself after the earthquake that (3)________ (occur) in 1906, and I stayed in the Mission District, enjoying some delicious noodles mixed with cultures. In the afternoon, I headed to a local museum (4)____ showed the historical changes in California. During the gold rush, many Chinese arrived, and some opened up shops and restaurants in Chinatown to earn a (5)_____ (live). Many others worked on (6)______ (farm), joined the gold rush, or went to build the railway that connected California to the east. The museum showed us (7)____ America was built by immigrants from (8)________ (difference) countries and cultures. In the evening, I went to Chinatown, and ate in a Cantonese restaurant that served food on (9)________(beauty) china plates. Tomorrow evening, I’m going to (10)__ jazz bar in the Richmond District. 答案:1. to be 2. rebuilding 3. occurred 4. that 5.living6. farms 7.how 8. different 9. beautiful 10. a

上一頁123...444546474849505152535455下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!