∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質(zhì)進行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生的感性認識,提高了學(xué)生對新知識的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進一步進行鞏固和提高.
方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負數(shù),不等號的方向改變.這也是這節(jié)課學(xué)生容易出錯的地方.教學(xué)時要大膽放手,不要怕學(xué)生出錯,通過學(xué)生犯的錯誤引起學(xué)生注意,理解產(chǎn)生錯誤的原因,以便在以后的學(xué)習(xí)中避免出錯.
安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時,一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計1.一元一次不等式組的解法2.一元一次不等式組的實際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時要讓學(xué)生養(yǎng)成檢驗的習(xí)慣,感受運用數(shù)學(xué)知識解決問題的過程,提高實際操作能力.
(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):
探究點二:用配方法解二次項系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個完全平方式,需將左邊配方.解:移項,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時,應(yīng)按照步驟嚴格進行,以免出錯.配方添加時,記住方程左右兩邊同時加上一次項系數(shù)一半的平方.三、板書設(shè)計用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項系數(shù)為1的一元二次方程的一般步驟:(1)移項,把方程的常數(shù)項移到方程的右邊,使方程的左邊只含二次項和一次項;(2)配方,方程兩邊都加上一次項系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.
設(shè)計意圖這一組習(xí)題的設(shè)計,讓每位學(xué)生都參與,通過學(xué)生的主動參與,讓每一位學(xué)生有“用武之地”,深刻體會本節(jié)課的重要內(nèi)容和思想方法,體驗學(xué)習(xí)數(shù)學(xué)的樂趣,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心。4.回顧反思,拓展延伸(教師活動)引導(dǎo)學(xué)生進行課堂小結(jié),給出下列提綱,并就學(xué)生回答進行點評。(1)通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些判斷直線與圓位置關(guān)系的方法?(2)本節(jié)課你還有哪些問題?(學(xué)生活動)學(xué)生發(fā)言,互相補充。(教師活動)布置作業(yè)(1)書面作業(yè):P70練習(xí)8.4.41、2題(2)實踐調(diào)查:尋找圓與直線的關(guān)系在生活中的應(yīng)用。設(shè)計意圖通過讓學(xué)生課本上的作業(yè)設(shè)置,基于本節(jié)課內(nèi)容和學(xué)生的實際,對課后的書面作業(yè)分為三個層次,分別安排了基礎(chǔ)鞏固題、理解題和拓展探究題。使學(xué)生完成基本學(xué)習(xí)任務(wù)的同時,在知識拓展時起激學(xué)生探究的熱情,讓每一個不同層次的學(xué)生都可以獲得成功的喜悅。
1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關(guān)系,并會進行簡單的換算.一、情境導(dǎo)入鐘表是我們生活中常見的物品,同學(xué)們,你能說出圖中每個鐘表時針與分針?biāo)傻慕嵌葐??學(xué)完了下面的內(nèi)容,就會知道答案.二、合作探究探究點一:角的概念及其表示方法【類型一】 對角的概念的考查下列關(guān)于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點;④角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關(guān),角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點旋轉(zhuǎn)而形成的圖形,說法正確.所以只有④正確.故選A.
1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關(guān)系嗎?與同伴進行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計意圖】運用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識和能力,又達到了互幫互助以弱帶強的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。
方法總結(jié):在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應(yīng)用本節(jié)知識的綜合性較強,要求學(xué)生熟練掌握前面所學(xué)的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學(xué)生理解并掌握多項式與多項式相乘的法則,教學(xué)中一定要精講精練,讓學(xué)生從練習(xí)中再次體會法則的內(nèi)容,為以后的學(xué)習(xí)奠定基礎(chǔ)
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關(guān)鍵.三、板書設(shè)計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應(yīng)用本課時的重點是讓學(xué)生理解單項式的乘法法則并能熟練應(yīng)用.要求學(xué)生在乘法的運算律以及冪的運算律的基礎(chǔ)上進行探究.教師在課堂上應(yīng)該處于引導(dǎo)位置,鼓勵學(xué)生“試一試”,學(xué)生通過動手操作,能夠更為直接的理解和應(yīng)用該知識點
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時是在上一課時的基礎(chǔ)上進行的拓展延伸,在教學(xué)時要給學(xué)生足夠主動權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時提高學(xué)生的邏輯思維能力.
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實際應(yīng)用題時,應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項式除以單項式法則計算.三、板書設(shè)計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應(yīng)用在教學(xué)過程中,通過生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項式乘以單項式的乘法運算推導(dǎo)出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學(xué)概念的生成過程,從而加深印象
一、情境導(dǎo)入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.
解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
設(shè)計意圖:最后是當(dāng)堂訓(xùn)練,目標(biāo)檢測,這一環(huán)節(jié)要盡量讓學(xué)生獨立完成,使訓(xùn)練高效,在學(xué)生訓(xùn)練時教師要巡回輔導(dǎo),重點關(guān)注課堂表現(xiàn)不太突出的學(xué)生,由于本課時內(nèi)容多,訓(xùn)練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當(dāng)堂訓(xùn)練的時間預(yù)估不足。四、教學(xué)思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設(shè)符合學(xué)生實際的問題情境,讓學(xué)生經(jīng)歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學(xué)生的應(yīng)用意識及分析問題解決問題的能力,培養(yǎng)了學(xué)生的數(shù)學(xué)建模能力及轉(zhuǎn)化的思維方法。2.充分相信學(xué)生并為學(xué)生提供展示自己的機會,課堂上要把激發(fā)學(xué)生學(xué)習(xí)熱情和獲得學(xué)習(xí)能力放在教學(xué)首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學(xué)生形成積極主動的求知態(tài)度。
解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分數(shù)、負數(shù)根不符合實際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應(yīng)用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實際生活的聯(lián)系,進一步感知方程的應(yīng)用價值.
三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2