方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.三、板書設計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既增加了學習興趣,又增強了學生的動手能力
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數a、b的值分別是94,32.方法總結:解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據不含某一項,可得這一項系數等于零,再列出方程解答.三、板書設計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內容,為以后的學習奠定基礎
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結:掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉化為三角形后木架的形狀就不變了.根據具體多邊形轉化為三角形的經驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結:將多邊形轉化為三角形時,所需要的木條根數,可從具體到一般去發(fā)現規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數學生在輔助線的構造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應相等的兩個三角形不一定全等.2.全等三角形判定與性質的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點)2.能運用“角邊角”“角角邊”判定方法解決有關問題.(難點) 一、情境導入如圖所示,某同學把一塊三角形的玻璃不小心打碎成了三塊,現在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學生活動:學生先自主探究出答案,然后再與同學進行交流.教師點撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據平行線的性質可得∠A=∠C,∠DFE=∠BEC,再根據等式的性質可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.
我們知道圓是一個旋轉對稱圖形,無論繞圓心旋轉多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉某個角度,畫出旋轉之后的圖形,比較前后兩個圖形,你能發(fā)現什么?二、合作探究探究點:圓心角、弧、弦之間的關系【類型一】 利用圓心角、弧、弦之間的關系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質,得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結:圓心角、弧、弦之間相等關系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據分式的基本性質把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結:約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設計1.分式的基本性質:分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數.本節(jié)課的流程比較順暢,先探究分式的基本性質,然后順勢探究分式變號法則.在每個活動中,都設計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結:利用等腰三角形“三線合一”得出結論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設計1.全等三角形的判定和性質2.等腰三角形的性質:等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉的性質的運用如圖,點E是正方形ABCD內一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉性質知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設計1.旋轉的概念將一個圖形繞一個頂點按照某個方向轉動一個角度,這樣的圖形運動稱為旋轉.2.旋轉的性質一個圖形和它經過旋轉所得的圖形中,對應點到旋轉中心的距離相等,任意一組對應點與旋轉中心的連線所成的角都等于旋轉角,對應線段相等,對應角相等.
【類型二】 根據不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據不等式的基本性質可判斷a+1為負數,即a+1<0,可得a<-1.方法總結:只有當不等式的兩邊都乘(或除以)一個負數時,不等號的方向才改變.三、板書設計1.不等式的基本性質性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;性質2:不等式的兩邊都乘(或除以)同一個正數,不等號的方向不變;性質3:不等式的兩邊都乘(或除以)同一個負數,不等號方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項”依據:不等式的基本性質1;“將未知數系數化為1”的依據:不等式的基本性質2、3.本節(jié)課學習不等式的基本性質,在學習過程中,可與等式的基本性質進行類比,在運用性質進行變形時,要注意不等號的方向是否發(fā)生改變;課堂教學時,鼓勵學生大膽質疑,通過練習中易出現的錯誤,引導學生歸納總結,提升學生的自主探究能力.
解析:水是生命之源,節(jié)約水資源是我們每個居民都應有的意識.題中給出假如每人浪費一點水,當人數增多時,將是一個非常驚人的數字,100萬人每天浪費的水資源為1000000×0.32=320000(升).所以320000=3.2×105.故選B.方法總結:從實際問題入手讓學生體會科學記數法的實際應用.題中沒有直接給出數據,應先計算,再表示.探究點二:將用科學記數法表示的數轉換為原數已知下列用科學記數法表示的數,寫出原來的數:(1)2.01×104;(2)6.070×105.解析:(1)將2.01的小數點向右移動4位即可;(2)將6.070的小數點向右移動5位即可.解:(1)2.01×104=20100;(2)6.070×105=607000.方法總結:將科學記數法a×10n表示的數,“還原”成通常表示的數,就是把a的小數點向右移動n位所得到的數.三、板書設計借助身邊熟悉的事物進一步體會大數,積累數學活動經驗,發(fā)展數感、空間感,培養(yǎng)學生自主學習的能力.
光年是表示較大距離的一個單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米??梢?,1毫米= 納米,容易算出,1納米相當于1毫米的一百萬分之一??上攵?,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內,故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點,可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調性可制成隱形飛機的涂料。納米材料的表面積大,對外界環(huán)境(物理的和化學的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測量溫度、熱輻射和檢測各種特定氣體的傳感器。在生物和醫(yī)學中也有重要應用。納米材料科學是20世紀80年代末誕生并正在崛起的科技新領域,它將成為跨世紀的科技熱點之一。
議一議數軸上的兩個點,右邊點表示的數與左邊點表示的數有怎樣的大小關系?數軸上表示的數,▁▁▁邊的總比▁▁▁邊的大;正數▁▁▁0,負數▁▁▁0,正數▁▁▁負數。練習:比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數軸?怎樣畫數軸。(2) 有理數與數軸上的點之間存在怎樣的關系?(3) 什么是相反數?怎樣求一個數的相反數?(4) 如何利用數軸比較有理數的大???5、隨堂練習:(1)下列說法正確的是( ) A、 數軸上的點只能表示有理數B、 一個數只能用數軸上的一個點表示C、 在1和3之間只有2D、 在數軸上離原點2個單位長度的點表示的數是2 (2)語句:①-5是相反數?②-5與+3互為相反數③-5是5的相反數④-5和5互為相反數⑤0的相反數是0⑥-0=0。上述說法中正確的是( )
將有理數-2,+1,0,-212,314在數軸上表示出來,并用“<”號連接各數.解析:利用數軸上的點來表示相應的數,再利用它們對應點的位置來判斷各數的大?。猓喝鐖D:由數軸可知-212<-2<0<+1<314.方法總結:一般地,數軸上多個數的大小比較,可利用“數軸上兩個點表示的數,右邊的總比左邊的大”這一性質進行比較.探究點四:點在數軸上的移動問題點A為數軸上表示-2的動點,當點A沿數軸移動4個單位長度到點B時,點B所表示的有理數為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數軸上表示-2的動點,①當點A沿數軸向左移動4個單位長度時,點B所表示的有理數為-6;②當點A沿數軸向右移動4個單位長度時,點B所表示的有理數為2.故選C.方法總結:點A在數軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.
方法總結:描述一個代數式的意義,可以從字母本身出發(fā)來描述字母之間的數量關系,也可以聯系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據實際問題列代數式用代數式表示下列各式:(1)王明同學買2本練習冊花了n元,那么買m本練習冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據買2本練習冊花了n元,得出買1本練習冊花n2元,再根據買了m本練習冊,即可列出算式.(2)根據正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習冊花了n元,∴買1本練習冊花n2元,∴買m本練習冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結:此題考查了列代數式,用到的知識點包括正方體的表面積公式和體積公式,根據題意列出式子是解本題的關鍵.
一、情境導入游泳是一項深受青少年喜愛的體育活動,學校為了加強學生的安全意識,組織學生觀看了紀實片《孩子,請不要私自下水》,并于觀看后在本校的2000名學生中作了抽樣調查.你能根據下面兩個不完整的統計圖回答以下問題嗎?(1)這次抽樣調查中,共調查了多少名學生?(2)補全兩個統計圖;(3)根據抽樣調查的結果,估算該校2000名學生中大約有多少人“一定會下河游泳”?二、合作探究探究點一:頻數直方圖的制作小紅家開了一個報亭,為了使每天進的某種報紙適量,小紅對這種報紙40天的銷售情況作了調查,這40天賣出這種報紙的份數如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數據分組,并繪制相應的頻數直方圖.解析:先找出這組數據的最大值和最小值,再以10為組距把數據分組,然后制作頻數直方圖.解:通過觀察這組數據的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數分布表:
1. 小明的腳長23.6厘米,鞋號應是 號。2.小亮的腳長25.1厘米,鞋號應是 號。3.小王選了25號鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結:剛才同學們都體會到了分組編碼使原來繁多,無敘的數據簡化、有序。因此分組、編碼是整理數據的一種重要的方法,在工商業(yè)、科研等活動中有廣泛的應用(四)反饋練習課內練習以下是某校七年級南,女生各10名右眼裸視的檢測結果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數據是用什么方法獲得的?(2)學生右眼視力跟性別有關嗎?為了回答這個問題,你將怎樣處理這組數據?你的結論是什么?(五). 歸納小結,體味數學快樂通過本節(jié)課的學習,你有那些收獲?(課堂小結交給學生)數據收集的方法:直接觀察、測量、調查、實驗、查閱文獻資料、使用互連網等。整理數據的方法:分類、排序、分組編碼等。(學生可能還會指出鞋碼和腳長之間的關系等)
[師]同學們想一想,你同父母一起去商店買衣服時,衣服上的號碼都有哪些,標志是什么?[生]我看到有些衣服上標有M、S、L、XL、XXL等號碼.但我不清楚代表的具體范圍.適合什么人穿.但肯定與身高、胖瘦有關.[師]這位同學很善動腦,也愛觀察. S代表最小號,身高在150~155 cm的人適合穿S號.M號適合身高在155~160 cm的人群著裝…….廠家做衣服訂尺寸也并不是按所有人的尺寸定做,而是按某個范圍分組批量生產.如何確定組距與組數呢?分組組數的確定,不僅與數據多少有關,還與數據的取值情況有關.在實際決定組數時,常有一個嘗試過程:先定組距,再計算出相應的組數.看看這個組數是否大致符合確定組數的經驗法則.在嘗試中,往往要比較相應于幾個組距的組數,然后從中選定一個較為合適的組數.我們一起看下表:小亮的做法.
1.進一步理解字母表示數的意義,能結合具體情景給字母賦于實際意義;理解代數式和代數式的值的意義,能解釋一些簡單代數式的實際背景或幾何意義,在具體情景中能求出代數式的值. (重難點)2.通過創(chuàng)設實際背景和引用符號,經歷觀察、體驗、驗算、猜想、歸納等數學過程,體會數學與現實世界的聯系,增強符號感,發(fā)展運用符號解決問題和數學探究意識. 教法學法:教學方法:引導—探究—發(fā)現法.學習方法:自主探究與合作交流相結合.課前準備:多媒體課件、投影儀、電腦教學過程:一、創(chuàng)設情境,引入新課.欣賞視頻,導入新課師:國慶六十周年大閱兵,同學們看了嗎?首先請同學們來欣賞一段視頻.(26秒.定格在胡錦濤主席乘坐紅旗轎車閱兵的一個瞬間.)師:這是新中國成立以來,規(guī)模最大、裝備最新、機械化程度最高的一次大閱兵.