二、適合我國國情的根本政治制度1、人民代表大會(huì)制度的主要內(nèi)容國家的一切權(quán)力屬于人民;人民在普選的基礎(chǔ)上選舉代表,組成各級人民代表大會(huì)作為國家權(quán)力機(jī)關(guān);由國家權(quán)力機(jī)關(guān)產(chǎn)生其他國家機(jī)關(guān),依法行使各自的職權(quán);實(shí)行民主集中制的組織和活動(dòng)原則等。2、為什么說人民代表大會(huì)制度是適合我國國情的根本政治制度(1)人民代表大會(huì)制度是由人民民主專政的社會(huì)主義國家性質(zhì)決定的,是建立其他國家管理制度的基礎(chǔ),是中國社會(huì)主義民主政治最鮮明的特點(diǎn)。(2)人民代表大會(huì)制度以人民當(dāng)家作主為宗旨,真正保證了人民群眾參加國家管理,充分體現(xiàn)了人民的意志和利益。(3)實(shí)踐證明,我國人民民主專政的國體和人民代表大會(huì)制度的政體,是中國人民奮斗的成果和歷史的選擇,是適合我國國情的政治制度。(4)建設(shè)社會(huì)主義民主政治,最重要的是堅(jiān)持和完善人民代表大會(huì)制度,決不照搬西方的政治制度模式。
(三)合作探究、精講點(diǎn)撥一、我國的政權(quán)組織形式教師活動(dòng):引導(dǎo)學(xué)生閱讀教材58頁“走進(jìn)我國的國家機(jī)關(guān)”材料,同時(shí)思考所提出的問題。學(xué)生活動(dòng):閱讀課本,討論問題。教師點(diǎn)評:這一組鏡頭反映了我國國家機(jī)構(gòu)中人民代表大會(huì)與其他國家機(jī)關(guān)的關(guān)系,從中可以看出,我國人民是如何通過人民代表大會(huì)制度組建國家機(jī)關(guān)、開展管理國家的各種政治活動(dòng)的。1、我國的政體(1)政體是一個(gè)國家的政權(quán)機(jī)關(guān)的組織形式。也就是通過什么方式、制度來組建國家政權(quán)機(jī)關(guān)的。教師活動(dòng):引導(dǎo)學(xué)生閱讀教材59、60頁“專家點(diǎn)評、名詞點(diǎn)擊”材料,同時(shí)思考:國家機(jī)構(gòu)一般由哪些國家機(jī)關(guān)組成?我國的國家機(jī)構(gòu)的組成情況是怎樣的?。學(xué)生活動(dòng):閱讀課本,討論問題。教師點(diǎn)評:國家機(jī)構(gòu)一般由國家元首、立法機(jī)關(guān)、行政機(jī)關(guān)、司法機(jī)關(guān)組成。不同國家在具體設(shè)置上有所不同。我國的立法機(jī)關(guān)是全國人民代表大會(huì)及其常務(wù)委員會(huì),它與地方各級人民代表大會(huì)組成國家權(quán)力機(jī)關(guān),并同其他國家機(jī)關(guān)共同組成我國的國家機(jī)構(gòu)體系。
(2)蒙古族音樂的最典型的代表就是馬頭琴,代表曲目《馬頭琴》。維吾爾古典樂曲《十二木卡姆八十二部大曲》,是維吾爾民間音樂向套曲形式發(fā)展的重大成果,也是一部維吾爾民間音樂和舞蹈完美結(jié)合的藝術(shù)瑰寶,它包括古典敘詠歌曲、民間敘事組歌、舞蹈樂曲和器樂曲340多首,長期流傳于南北疆各地。維吾爾族的古老樂器是彈布爾,主要曲目為《烏扎勒》。哈薩克族著名的《瑪依拉)Ⅺ我的花兒》已成為國內(nèi)乃至國際聲樂壇上經(jīng)常演唱的曲目。2.多民族文化對中華文化的意義此知識點(diǎn)教材從四個(gè)方面分析:第一,分析民族文化與中華文化關(guān)系;第二,分析了民族文化的地位;第蘭,分析r民族文化之問的關(guān)系;第四,總結(jié)其意義。(1)中華民族是多民族的共同體,中華文化呈現(xiàn)多種民族文化的豐富色彩。中華各民族的文化,既有中華文化的共性,義有各自的民族特性。(2)地位。它們都足中華文化的瑰寶,都是中華民族的驕傲。(3)各民族文化的關(guān)系。各兒弟民族文化相互交融、相互促進(jìn),共同創(chuàng)造中華文化。
四、學(xué)情分析學(xué)生對博大精深的中華文化,其認(rèn)知起點(diǎn)絕大多數(shù)都是由歷史書本所得,有一定的學(xué)習(xí)興趣。但對于學(xué)生來說,對中華文化的了解只是只鱗片甲,要學(xué)會(huì)分析傳統(tǒng)文化,辨析中華文化的區(qū)域特征,理解博大精深的中華文化是中華民族延續(xù)和發(fā)展的重要標(biāo)識這一課標(biāo)的要求還有難度。再則學(xué)生從感性到理性的思維的跳躍也有一定障礙。同時(shí)學(xué)生在收集與篩選社會(huì)信息、辨識社會(huì)現(xiàn)象、合作、表達(dá)能力等方面也有待加強(qiáng)。五、教學(xué)方法問題研討教學(xué)法、自主探究學(xué)習(xí)法六、課前準(zhǔn)備1、學(xué)生準(zhǔn)備:預(yù)習(xí)教材內(nèi)容,完成預(yù)習(xí)目標(biāo)2、教師準(zhǔn)備:多媒體課件制作,課前預(yù)習(xí)學(xué)案,課內(nèi)探究學(xué)案。3、教學(xué)環(huán)境的設(shè)計(jì)和布置:多媒體教室分配好學(xué)習(xí)小組七、課時(shí)安排:1課時(shí)八、教學(xué)過程(一)預(yù)習(xí)檢查、總結(jié)疑惑檢查落實(shí)學(xué)生的預(yù)習(xí)情況并了解學(xué)生的疑惑,使教學(xué)具有針對性。(二)情境導(dǎo)入、展示目標(biāo)從歷史的角度看,中華文化源遠(yuǎn)流長;在內(nèi)容上看,中華文化博大精深。這節(jié) 課學(xué)習(xí)第二框。
一、教材分析《哲學(xué)史上的偉大變革》是人教版高中政治必修四第3課第2框的教學(xué)內(nèi)容。二、教學(xué)目標(biāo)1.知識目標(biāo):馬克思主義哲學(xué)產(chǎn)生的階級基礎(chǔ)、自然科學(xué)基礎(chǔ)和理論來源馬克思主義哲學(xué)的基本特征馬克思主義中國化的重大理論成果2.能力目標(biāo):通過對馬克思主義哲學(xué)的產(chǎn)生和基本特征的學(xué)習(xí),培養(yǎng)學(xué)生鑒別理論是非的能力,進(jìn)而運(yùn)用馬克思主義哲學(xué)的基本觀點(diǎn)分析和解決生活實(shí)踐中的問題。3.情感、態(tài)度和價(jià)值觀目標(biāo):實(shí)踐的觀點(diǎn)是馬克思主義哲學(xué)的首要和基本的觀點(diǎn),培養(yǎng)學(xué)生在實(shí)踐中分析問題和解決問題的能力,進(jìn)而培養(yǎng)學(xué)生在實(shí)踐活動(dòng)中的科學(xué)探索精神和革命批判精神。三、教學(xué)重點(diǎn)難點(diǎn)重點(diǎn):馬克思主義哲學(xué)的基本特征;馬克思主義中國化的重大理論成果
討論:二氧化碳在大氣的受熱過程中起到了什么作用?(吸收太陽輻射中的紅外線輻射和地面輻射,保溫作用)大氣中的二氧化碳濃度增大對氣溫有什么影響?(全球氣候變暖)閱讀:我們知道了太陽輻射中的可見光和紅外 光能量的吸收和轉(zhuǎn)化,那么紫外區(qū)的能量到哪兒去了?請同學(xué)們查閱資料,自主探討。小結(jié):大氣的受熱過 程就是太陽曬熱了地面,地面烘熱了大氣。太陽輻射是大氣的根本熱源,地面輻射是大氣的直接熱源。這就是為什么海拔越高,氣溫越低的原因,難怪高處不勝寒!轉(zhuǎn)承:大氣的直接熱源是地面,不同性質(zhì)的地面溫度是不同的,同緯度,海洋和陸地就有溫差。提問:請學(xué)生說說白天和晚上在海邊的不同感受。由白天和晚上的風(fēng)向不同切入實(shí)驗(yàn)P32活動(dòng)。討論:通過煙霧的飄動(dòng),我們得出了什么規(guī)律?冷熱不均引起了熱力環(huán)流板書: 二、熱力環(huán)流板圖與分析:結(jié)合試驗(yàn),學(xué)生分析熱力環(huán)流 的產(chǎn)生
【知能訓(xùn)練】一、選擇題(第1-5題為單項(xiàng)選擇題,第6-7題為雙項(xiàng)選擇題)東北溫帶濕潤、半濕潤地區(qū)內(nèi)的三江平原有“北大荒”之稱,如今“北大荒”已被人們稱為“北大倉”。據(jù)此完成1-2題:1、下列關(guān)于三江平原的敘述,正確的是()A.地處中溫帶濕潤地區(qū)B.因糧食單位面積產(chǎn)量高而成為全國性的商品糧基地之一C.土壤因富含礦物質(zhì)而形成肥沃的黑土D.夏季高溫且雨熱同期,利于冬小麥、玉米種植2、目前,三江平原還有大片沼澤荒地,但2000年國務(wù)院下令停止圍墾,其主要原因是()A.我國已加入WTO,可以從國際市場大量廉價(jià)進(jìn)口糧食B.保護(hù)“濕地”有利于改善生態(tài)環(huán)境C.開展多種經(jīng)營,發(fā)展菱藕等水生植物生產(chǎn)D.煤、石油等礦產(chǎn)資源豐富,今后轉(zhuǎn)向礦產(chǎn)資源開發(fā)利用3、我國西部地區(qū)的地理差異有()A.甘新多沙漠戈壁,青藏多大河湖泊B.陜甘寧地勢低平,云貴川地形崎嶇
1、 如圖4-25,將一個(gè)圓分成三個(gè)大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫一個(gè)半徑是2cm的圓,并在其中畫一個(gè)圓心為60º的扇形,你會(huì)計(jì)算這個(gè)扇形的面積嗎?與同伴交流。教師對答案進(jìn)行匯總,講解本題解題思路:1、 因?yàn)橐粋€(gè)圓被分成了大小相同的扇形,所以每個(gè)扇形的圓心角相同,又因?yàn)閳A周角是360º,所以每個(gè)扇形的圓心角是360º÷3=120º,每個(gè)扇形的面積為整個(gè)圓的面積的三分之一。2、 先求出這個(gè)圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計(jì)意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來,體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。
1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導(dǎo)入愛護(hù)花草樹木是我們每個(gè)人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識,你就會(huì)知道.二、合作探究探究點(diǎn)一:線段長度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長;(2)根據(jù)(1)中的計(jì)算過程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.
教學(xué)反思: 1.本課時(shí)設(shè)計(jì)的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對數(shù)與形有一個(gè)初步的認(rèn)識.為將來的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開拓了一個(gè)新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學(xué)生比較線段的方法,沒有從數(shù)形結(jié)合的高度去認(rèn)識.實(shí)際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識的同時(shí),交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點(diǎn)不容忽視,在日常的教學(xué)中要時(shí)時(shí)注意.2.學(xué)生在小學(xué)時(shí)只會(huì)用圓規(guī)畫圓,不會(huì)用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學(xué)生對圓規(guī)的用法有一個(gè)新的認(rèn)識.3.在課堂練習(xí)中安排了度量一些三角形的邊的長度,目的是想通過度量使學(xué)生對“兩點(diǎn)之間線段最短”這一結(jié)論有一個(gè)感性的認(rèn)識,并為下面的教學(xué)做一個(gè)鋪墊.
(1)請你用代數(shù)式表示水渠的橫斷面面積;(2)計(jì)算當(dāng)a=3,b=1時(shí),水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時(shí)水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時(shí)需搞清下列幾個(gè)問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個(gè)量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計(jì)教學(xué)過程中,應(yīng)通過活動(dòng)使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.
方法總結(jié):對等式進(jìn)行變形,必須在等式的兩邊同時(shí)進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時(shí),一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.
教學(xué)目標(biāo)1、知識目標(biāo):掌握等式的性質(zhì);會(huì)運(yùn)用等式的性質(zhì)解簡單的一元一次方程。2、能力目標(biāo):通過觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的意識和情感,敢于面對數(shù)學(xué)活動(dòng)中的困難,獲得成功的體驗(yàn),體會(huì)解決問題中與他人合作的重要性。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和應(yīng)用等式的性質(zhì)。難點(diǎn):應(yīng)用等式的性質(zhì),把簡單的一元一次方程化為“x=a”的形式。教學(xué)時(shí)數(shù) 2課時(shí)(本節(jié)課是第一課時(shí))教學(xué)方法 多媒體教學(xué)教學(xué)過程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)
方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對照和分析,即可判定.探究點(diǎn)二:確定多邊形的對角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過n邊形的一個(gè)頂點(diǎn)可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
判斷下面抽樣調(diào)查選取樣本的方法是否合適:(1)檢查某啤酒廠即將出廠的啤酒質(zhì)量情況,先隨機(jī)抽取若干箱(捆),再在抽取的每箱(捆)中,隨機(jī)抽取1~2瓶檢查;(2)通過網(wǎng)上問卷調(diào)查方式,了解百姓對央視春節(jié)晚會(huì)的評價(jià);(3)調(diào)查某市中小學(xué)生學(xué)習(xí)負(fù)擔(dān)的狀況,在該市每所小學(xué)的每個(gè)班級選取一名學(xué)生,進(jìn)行問卷調(diào)查;(4)教育部為了調(diào)查中小學(xué)亂收費(fèi)情況,調(diào)查了某市所有中小學(xué)生.解析:本題應(yīng)看樣本是否為簡單隨機(jī)樣本,是否具有代表性.解:(1)合適,這是一種隨機(jī)抽樣的方法,樣本為簡單隨機(jī)樣本.(2)不合適,我國農(nóng)村人口眾多,多數(shù)農(nóng)民是不上網(wǎng)的,所以調(diào)查的對象在總體中不具有代表性.(3)不合適,選取的樣本中個(gè)體太少.(4)不合適,樣本雖然足夠大,但遺漏了其他城市里的這些群體,應(yīng)在全國范圍內(nèi)分層選取樣本,除了上述原因外,每班的學(xué)生全部作為樣本是沒有必要的.
解析:當(dāng)截面與軸截面平行時(shí),得到的截面的形狀為長方形;當(dāng)截面與軸截面斜交時(shí),得到的截面的形狀是橢圓;當(dāng)截面與軸截面垂直時(shí),得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結(jié):用平面去截圓柱時(shí),常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點(diǎn)三:截圓錐問題一豎直平面經(jīng)過圓錐的頂點(diǎn)截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過圓錐頂點(diǎn)的平面與圓錐的側(cè)面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個(gè)等腰三角形.故選B.方法總結(jié):用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設(shè)計(jì)教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學(xué)知識與技能,發(fā)展空間觀念和動(dòng)手操作能力,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.
[例3]、用一個(gè)平面去截一個(gè)幾何體,截面形狀有圓、三角形,那么這個(gè)幾何體可能是_________。四、鞏固強(qiáng)化:1、一個(gè)正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個(gè)平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個(gè)平面去截幾何體,若截面是三角形,這個(gè)幾何體可能是__________________________________________________.4*、用一個(gè)平面截一個(gè)幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個(gè)平面截一個(gè)正方體的一個(gè)角,剩下的幾何體有幾個(gè)頂點(diǎn)、幾條棱、幾個(gè)面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個(gè)欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會(huì)有_____和_______這兩種較特殊圖形,截法如下:
解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時(shí),要做到不重不漏,分類標(biāo)準(zhǔn)不同時(shí),分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點(diǎn)二:幾何體的形成筆尖畫線可以理解為點(diǎn)動(dòng)成線.使用數(shù)學(xué)知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個(gè)球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動(dòng).解:(1)點(diǎn)動(dòng)成線;(2)線動(dòng)成面;(3)面動(dòng)成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識來解釋,關(guān)鍵是要找到生活實(shí)例與數(shù)學(xué)知識的連接點(diǎn),如第(1)題可將流星看作一個(gè)點(diǎn),則“點(diǎn)動(dòng)成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個(gè)正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵(lì)學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個(gè)多面體,看看是否還是那個(gè)結(jié)果。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。