活動目的:通過兩個圖案設(shè)計,一個是讓學(xué)生獨立思考,借助于已經(jīng)學(xué)習(xí)的用尺規(guī)作線段和角來完成,對本節(jié)課的知識進一步鞏固應(yīng)用;另一個是讓學(xué)生根據(jù)作圖步驟借助于尺規(guī)完成圖案,進一步培養(yǎng)學(xué)生幾何語言表達(dá)能力,并積累尺規(guī)作圖的活動經(jīng)驗?;顒幼⒁馐马棧焊鶕?jù)課堂時間安排,可靈活進行處理,既可以作為本節(jié)課的實際應(yīng)用,也可以作為課下的聯(lián)系拓廣,從而使得不同層次的學(xué)生都學(xué)到有價值的數(shù)學(xué)。四、 教學(xué)設(shè)計反思1.利用現(xiàn)實情景引入新課,既能體現(xiàn)數(shù)學(xué)知識與客觀世界的良好結(jié)合,又能喚起學(xué)生的求知欲望和探求意識。而在了解基礎(chǔ)知識以后,將其進行一定的升華,也能使學(xué)生明白學(xué)以致用的道理、體會知識的漸進發(fā)展過程,增強思維能力的培養(yǎng)。同時,在整個探究過程中,怎樣團結(jié)協(xié)作、如何共同尋找解題的突破口,也是學(xué)生逐步提高的一個途徑。
活動6:通過隨堂小測的方式辨別圓的相關(guān)概念。目的:讓學(xué)生準(zhǔn)確地掌握直徑與弦,弧與半圓的關(guān)系,以及準(zhǔn)確理解等圓和等弧的概念?;顒?:讓學(xué)生分組討論“投圈游戲”,解決生活中的實際問題。目的:提高學(xué)生運用所學(xué)圓的知識,解決實際問題的能力;也是為了鞏固圓的定義,同時再次激發(fā)學(xué)生的學(xué)習(xí)興趣。活動8:給學(xué)生一個草坪情境,要求作出半徑為5m的圓,并說明原理。目的:提高學(xué)生的綜合運用能力,并鞏固圓的定義?;顒?:讓學(xué)生根據(jù)樹木的年輪的直徑和生長年齡,計算樹木每年的生長情況。目的:鞏固圓的知識?;顒?0:讓學(xué)生回顧本節(jié)課的重要內(nèi)容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關(guān)元素的概念,便于識記、理解和運用。后者的目的是:第一題,檢測學(xué)生的動手能力和提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;第二題,檢測學(xué)生對本節(jié)課的重要內(nèi)容的理解情況;第三題,檢測學(xué)生的綜合運用能力。以上是我對本節(jié)課內(nèi)容的理解和設(shè)計。
練習(xí):現(xiàn)在你能解答課本85頁的習(xí)題3.1第6題嗎?有一個班的同學(xué)去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問這個班共多少同學(xué)?小結(jié)提問:1、今天你又學(xué)會了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書中的“對消”與“還原”是什么意思嗎?3、今天討論的問題中的相等關(guān)系又有何共同特點?學(xué)生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(等式的性質(zhì)1)合并(分配律)系數(shù)化為1(等式的性質(zhì)2)表示同一量的兩個不同式子相等作業(yè):1、 必做題:課本習(xí)題2、 選做題:將一塊長、寬、高分別為4厘米、2厘米、3厘米的長方體橡皮泥捏成一個底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點三:工程問題一個道路工程,甲隊單獨施工9天完成,乙隊單獨做24天完成.現(xiàn)在甲乙兩隊共同施工3天,因甲另有任務(wù),剩下的工程由乙隊完成,問乙隊還需幾天才能完成?解析:首先設(shè)乙隊還需x天才能完成,由題意可得等量關(guān)系:甲隊干三天的工作量+乙隊干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時間=工作總量,當(dāng)題中沒有一些必須的量時,為了簡便,應(yīng)設(shè)其為1.三、板書設(shè)計“希望工程”義演題目特點:未知數(shù)一般有兩個,等量關(guān)系也有兩個解題思路:利用其中一個等量關(guān)系設(shè)未知數(shù),利用另一個等量關(guān)系列方程
從而為列方程找等量關(guān)系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個小組,為增強小組討論結(jié)果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學(xué)生自己設(shè)計表格為討論的得出起到輔助作用.2.相信學(xué)生并為學(xué)生提供充分展示自己的機會本節(jié)課的設(shè)計中,通過學(xué)生多次的動手操作活動,引導(dǎo)學(xué)生進行探索,使學(xué)生確實是在舊知識的基礎(chǔ)上探求新內(nèi)容,探索的過程是沒有難度的任何學(xué)生都會動手操作,每個學(xué)生都有體會的過程,都有感悟的可能,這種形式讓學(xué)生切身去體驗問題的情景,從而進一步幫助學(xué)生理解比較復(fù)雜的問題,再把實際問題抽象成數(shù)學(xué)問題.3.注意改進的方面本節(jié)課由于構(gòu)題新穎有趣,所以一開始就抓住了學(xué)生的求知欲望,課堂氣氛活躍,討論問題積極主動.但由于學(xué)生發(fā)表自己的想法較多,使得教學(xué)時間不能很好把握,導(dǎo)致課堂練習(xí)時間緊張,今后予以改進.
1:甲、乙、丙三個村莊合修一條水渠,計劃需要176個勞動力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個村莊各派多少個勞動力?2:某校組織活動,共有100人參加,要把參加活動的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問這兩組人數(shù)各有多少人?目的:檢測學(xué)生本節(jié)課掌握知識點的情況,及時反饋學(xué)生學(xué)習(xí)中存在的問題.實際活動效果:從學(xué)生做題的情況看,大部分學(xué)生都能正確地列出方程,但其中一部分人并不能有意識地用“列表格”法來分析問題,因此,教師仍需引導(dǎo)他們能學(xué)會用“列表格”這個工具,有利于以后遇上復(fù)雜問題能很靈活地得到解決.六、歸納總結(jié):活動內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識:1. 兩個未知量,兩個等量關(guān)系,如何列方程;2. 尋找中間量;3. 學(xué)會用表格分析數(shù)量間的關(guān)系.
解:設(shè)截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關(guān)系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實際問題的方法。五、目標(biāo)檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
探究點二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實數(shù)根.沒有特殊要求時,一般不用配方法.
∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗方程的解是否正確,是否保證實際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實際問題的過程,體會一元二次方程是刻畫現(xiàn)實世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
(3)移項得-4x=4+8,合并同類項得-4x=12,系數(shù)化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項移到方程的左邊,常數(shù)項移到方程的右邊,然后合并同類項,最后將未知數(shù)的系數(shù)化為1.特別注意移項要變號.探究點三:列一元一次方程解應(yīng)用題把一批圖書分給七年級某班的同學(xué)閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學(xué)生?解析:根據(jù)實際書的數(shù)量可得相應(yīng)的等量關(guān)系:3×學(xué)生數(shù)量+20=4×學(xué)生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個班有x個學(xué)生,根據(jù)題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數(shù)化成1得x=45.答:這個班有45人.方法總結(jié):列方程解應(yīng)用題時,應(yīng)抓住題目中的“相等”、“誰比誰多多少”等表示數(shù)量關(guān)系的詞語,以便從中找出合適的等量關(guān)系列方程.
因為x3表示手機部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場共有兩種進貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時,要注意不同型號的手機數(shù)量和單價要對應(yīng).三、板書設(shè)計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關(guān)系方案選擇通過問題的解決使學(xué)生進一步認(rèn)識數(shù)學(xué)與現(xiàn)實世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話題的研討,從中懂得數(shù)學(xué)的價值,逐步形成運用數(shù)學(xué)的意識;并且通過對問題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟意識,增強他們的節(jié)約和有效合理利用資源的意識.
答:書包單價92元,隨身聽單價360元。最優(yōu)化決策:聰明的Mike想了想回答正確后便同爸爸去買禮物,恰好趕上商家促銷,人民商場所有商品打八折銷售,家樂福全場購物滿100元返購物券30元銷售(不足100元不返券,購物券全場通用),但他只帶了400元錢,如果他只在一家購買看中的這兩樣物品,你能幫助他選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?提示:書包單價92元,隨身聽單價360元。2)在人民商場購買隨聲聽與書包各一樣需花費現(xiàn)金452× =361.6(元)∵ 361.6<400 ∴可以選擇在人民商場購買。在家樂??上然ìF(xiàn)金360元購買隨身聽,再利用得到的90元返券,加上2元現(xiàn)金購買書包,共花現(xiàn)金360+2=362(元)。因為362<400,所以也可以選擇在家樂福購買。因為362>361.6,所以在人民商場購買更省錢。第五環(huán)節(jié):學(xué)習(xí)反思;(5分鐘,學(xué)生思考回答,不足的地方教師補充和強調(diào)。)
5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗,激發(fā)學(xué)生探索知識的興趣,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準(zhǔn)確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達(dá)到加深理解判定方法2的條件的目的的.
(一)復(fù)習(xí)導(dǎo)入 1.師:我們學(xué)過了因數(shù)的有關(guān)知識,下面老師就檢驗一下,看你們學(xué)得怎么樣?(課件第2張)(1)24的因數(shù)有(1,2,3,4,6,8,12,24),30的因數(shù)有(1,2,3,5,6,10,15,30),24和30的公因數(shù)有(1,2,3,6),它們的最大公因數(shù)是(6)。(2)分?jǐn)?shù)的分子和分母同時(乘)或(除以)一個(相同的數(shù))(0除外),分?jǐn)?shù)的大?。ú蛔儯?,這叫做分?jǐn)?shù)的基本性質(zhì)?!驹O(shè)計意圖】復(fù)習(xí)舊知,約分的根據(jù)是分?jǐn)?shù)的基本性質(zhì),要約成最簡分?jǐn)?shù),需要分子和分母同時除以它們的最大公因數(shù),所以復(fù)習(xí)環(huán)節(jié)設(shè)計了這兩個知識點的練習(xí),為學(xué)習(xí)新知識做準(zhǔn)備。2.大家一定都喜歡孫悟空吧!你知道孫悟空最大的本事是什么嗎?(72變)這節(jié)課我們就來創(chuàng)造第73變——變分?jǐn)?shù)!(二)探究新知 1、探究約分的方法。(1)把化成分子和分母比較小且分?jǐn)?shù)大小不變的分?jǐn)?shù)。(課件第4張) 小組討論:你是怎么想的?匯報交流(課件第5張)生1:可以用分子和分母的公因數(shù)(1除外)去除。生2:我用24和30的公因數(shù)2去除,,然后再用12和15的公因數(shù)3去除, 生3:我直接用24和30的最大公因數(shù)6去除。(2)用自己的話說說什么是約分?(課件第6張)生1:把一個分?jǐn)?shù)化成和它相等,但分子和分母都比較小的分?jǐn)?shù),叫做約分。
一、說教材1.教材分析《同級混合運算》是九年義務(wù)教育人教版二年級下冊第五單元的教學(xué)內(nèi)容。教材創(chuàng)設(shè)了“圖書閱覽室”問題情境,目的是為了讓學(xué)生了解脫式運算,了解沒有括號的算式里,只有加減法或只有乘除法,都要從左往右按順序計算。使他們樹立學(xué)習(xí)數(shù)學(xué)的信心,逐步提高他們的計算能力。 2.教學(xué)目標(biāo)知識目標(biāo):借助解決問題的過程讓學(xué)生明白“在同級的混合運算中,應(yīng)從左往右依次計算”的道理。能力目標(biāo):在經(jīng)歷探索和交流的過程中,理解并掌握同級運算的運算順序,能正確運用運算順序進行計算,并能正確進行脫式計算的書寫。情感目標(biāo):培養(yǎng)學(xué)生養(yǎng)成先看運算順序,再進行計算的良好習(xí)慣,同時提高學(xué)生的計算能力。3.教學(xué)重難點教學(xué)重點:理解并掌握同級運算的運算順序,并能正確地進行脫式計算。教學(xué)難點:能正確進行脫式計算,掌握脫式計算的書寫格式。二、說教法根據(jù)新課程理念,學(xué)生已有的知識、生活經(jīng)驗,結(jié)合教材的特點,我采用了以下教法:1、情景教學(xué)法:新課開始,讓學(xué)生通過圖書館這一情景,理解運算順序。2、發(fā)現(xiàn)、討論法:利用我們小組合作座位優(yōu)勢,讓小組間討論、說計算過程,從而掌握計算方法。三、說學(xué)法運用書本為載體,以觀察、比較、小組討論、推理和應(yīng)用及口算為主線,目的是為了使學(xué)生對學(xué)習(xí)有興趣和留給學(xué)生學(xué)習(xí)思考的空間。