①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長(zhǎng);②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長(zhǎng)線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對(duì)應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對(duì)對(duì)應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒(méi)有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對(duì)畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡(jiǎn)便.三、板書設(shè)計(jì)
(2)假如你摸一次,估計(jì)你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個(gè).解:(1)0.6(2)0.6(3)設(shè)黑球有x個(gè),則2424+x=0.6,解得x=16.經(jīng)檢驗(yàn),x=16是方程的解且符合題意.所以盒子里有黑球16個(gè).方法總結(jié):本題主要考查用頻率估計(jì)概率的方法,當(dāng)摸球次數(shù)增多時(shí),摸到白球的頻率mn將會(huì)接近一個(gè)數(shù)值,則可把這個(gè)數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個(gè).三、板書設(shè)計(jì)用頻率估計(jì)概率用頻率估計(jì)概率用替代物模擬試驗(yàn)估計(jì)概率通過(guò)實(shí)驗(yàn),理解當(dāng)實(shí)驗(yàn)次數(shù)較大時(shí)實(shí)驗(yàn)頻率穩(wěn)定于理論頻率,并據(jù)此估計(jì)某一事件發(fā)生的概率.經(jīng)歷實(shí)驗(yàn)、統(tǒng)計(jì)等活動(dòng)過(guò)程,進(jìn)一步發(fā)展學(xué)生合作交流的意識(shí)和能力.通過(guò)動(dòng)手實(shí)驗(yàn)和課堂交流,進(jìn)一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購(gòu)買次品西裝的顧客前來(lái)調(diào)換,至少應(yīng)該進(jìn)多少件西裝?六、課堂小結(jié):盡管隨機(jī)事件在每次實(shí)驗(yàn)中發(fā)生與否具有不確定性,但只要保持實(shí)驗(yàn)條件不變,那么這一事件出現(xiàn)的頻率就會(huì)隨著實(shí)驗(yàn)次數(shù)的增大而趨于穩(wěn)定,這個(gè)穩(wěn)定值就可以作為該事件發(fā)生概率的估計(jì)值。七、作業(yè):課后練習(xí)補(bǔ)充:一個(gè)口袋中有12個(gè)白球和若干個(gè)黑球,在不允許將球倒出來(lái)數(shù)的前提下,小亮為估計(jì)口袋中黑球的個(gè)數(shù),采用了如下的方法:每次先從口袋中摸出10個(gè)球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復(fù)上述過(guò)程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計(jì)口袋中大約有 48 個(gè)黑球。
合探2 與同伴合作,兩個(gè)人分別畫△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時(shí),∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個(gè)三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個(gè)三角形相似.這個(gè)定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點(diǎn),DE∥BC,AB= 7,AD=5,DE=10,求B C的長(zhǎng)。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個(gè)三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個(gè)銳角相等的兩個(gè)直角三角形是否相似?為什么?2.自己獨(dú)立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個(gè)定理.七、作業(yè):
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗(yàn)中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進(jìn)行的事件,在求概率時(shí)要正確區(qū)分,如利用列表法求概率時(shí),不重復(fù)在列表中有空格,重復(fù)在列表中則不會(huì)出現(xiàn)空格.三、板書設(shè)計(jì)用樹狀圖或表格求概率畫樹狀圖法列表法通過(guò)與學(xué)生現(xiàn)實(shí)生活相聯(lián)系的游戲?yàn)檩d體,培養(yǎng)學(xué)生建立概率模型的思想意識(shí).在活動(dòng)中進(jìn)一步發(fā)展學(xué)生的合作交流意識(shí),提高學(xué)生對(duì)所研究問(wèn)題的反思和拓展的能力,逐步形成良好的反思意識(shí).鼓勵(lì)學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識(shí).
(3)移項(xiàng)得-4x=4+8,合并同類項(xiàng)得-4x=12,系數(shù)化成1得x=-3;(4)移項(xiàng)得1.3x+0.5x=0.7+6.5,合并同類項(xiàng)得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項(xiàng)移到方程的左邊,常數(shù)項(xiàng)移到方程的右邊,然后合并同類項(xiàng),最后將未知數(shù)的系數(shù)化為1.特別注意移項(xiàng)要變號(hào).探究點(diǎn)三:列一元一次方程解應(yīng)用題把一批圖書分給七年級(jí)某班的同學(xué)閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個(gè)班有多少學(xué)生?解析:根據(jù)實(shí)際書的數(shù)量可得相應(yīng)的等量關(guān)系:3×學(xué)生數(shù)量+20=4×學(xué)生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個(gè)班有x個(gè)學(xué)生,根據(jù)題意得3x+20=4x-25,移項(xiàng)得3x-4x=-25-20,合并同類項(xiàng)得-x=-45,系數(shù)化成1得x=45.答:這個(gè)班有45人.方法總結(jié):列方程解應(yīng)用題時(shí),應(yīng)抓住題目中的“相等”、“誰(shuí)比誰(shuí)多多少”等表示數(shù)量關(guān)系的詞語(yǔ),以便從中找出合適的等量關(guān)系列方程.
方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.探究點(diǎn)三:工程問(wèn)題一個(gè)道路工程,甲隊(duì)單獨(dú)施工9天完成,乙隊(duì)單獨(dú)做24天完成.現(xiàn)在甲乙兩隊(duì)共同施工3天,因甲另有任務(wù),剩下的工程由乙隊(duì)完成,問(wèn)乙隊(duì)還需幾天才能完成?解析:首先設(shè)乙隊(duì)還需x天才能完成,由題意可得等量關(guān)系:甲隊(duì)干三天的工作量+乙隊(duì)干(x+3)天的工作量=1,根據(jù)等量關(guān)系列出方程,求解即可.解:設(shè)乙隊(duì)還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊(duì)還需13天才能完成.方法總結(jié):找到等量關(guān)系是解決問(wèn)題的關(guān)鍵.本題主要考查的等量關(guān)系為:工作效率×工作時(shí)間=工作總量,當(dāng)題中沒(méi)有一些必須的量時(shí),為了簡(jiǎn)便,應(yīng)設(shè)其為1.三、板書設(shè)計(jì)“希望工程”義演題目特點(diǎn):未知數(shù)一般有兩個(gè),等量關(guān)系也有兩個(gè)解題思路:利用其中一個(gè)等量關(guān)系設(shè)未知數(shù),利用另一個(gè)等量關(guān)系列方程
練習(xí):現(xiàn)在你能解答課本85頁(yè)的習(xí)題3.1第6題嗎?有一個(gè)班的同學(xué)去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問(wèn)這個(gè)班共多少同學(xué)?小結(jié)提問(wèn):1、今天你又學(xué)會(huì)了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書中的“對(duì)消”與“還原”是什么意思嗎?3、今天討論的問(wèn)題中的相等關(guān)系又有何共同特點(diǎn)?學(xué)生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(xiàng)(等式的性質(zhì)1)合并(分配律)系數(shù)化為1(等式的性質(zhì)2)表示同一量的兩個(gè)不同式子相等作業(yè):1、 必做題:課本習(xí)題2、 選做題:將一塊長(zhǎng)、寬、高分別為4厘米、2厘米、3厘米的長(zhǎng)方體橡皮泥捏成一個(gè)底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)
1:甲、乙、丙三個(gè)村莊合修一條水渠,計(jì)劃需要176個(gè)勞動(dòng)力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個(gè)村莊各派多少個(gè)勞動(dòng)力?2:某校組織活動(dòng),共有100人參加,要把參加活動(dòng)的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問(wèn)這兩組人數(shù)各有多少人?目的:檢測(cè)學(xué)生本節(jié)課掌握知識(shí)點(diǎn)的情況,及時(shí)反饋學(xué)生學(xué)習(xí)中存在的問(wèn)題.實(shí)際活動(dòng)效果:從學(xué)生做題的情況看,大部分學(xué)生都能正確地列出方程,但其中一部分人并不能有意識(shí)地用“列表格”法來(lái)分析問(wèn)題,因此,教師仍需引導(dǎo)他們能學(xué)會(huì)用“列表格”這個(gè)工具,有利于以后遇上復(fù)雜問(wèn)題能很靈活地得到解決.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1. 兩個(gè)未知量,兩個(gè)等量關(guān)系,如何列方程;2. 尋找中間量;3. 學(xué)會(huì)用表格分析數(shù)量間的關(guān)系.
解:設(shè)截取圓鋼的長(zhǎng)度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長(zhǎng)度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長(zhǎng)方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長(zhǎng)方體的體積”就是我們所要尋找的等量關(guān)系.探究點(diǎn)三:面積變化問(wèn)題將一個(gè)長(zhǎng)、寬、高分別為15cm、12cm和8cm的長(zhǎng)方體鋼坯鍛造成一個(gè)底面是邊長(zhǎng)為12cm的正方形的長(zhǎng)方體鋼坯.試問(wèn):是鍛造前的長(zhǎng)方體鋼坯的表面積大,還是鍛造后的長(zhǎng)方體鋼坯的表面積大?請(qǐng)你計(jì)算比較.解析:由鍛造前后兩長(zhǎng)方體鋼坯體積相等,可求出鍛造后長(zhǎng)方體鋼坯的高.再計(jì)算鍛造前后兩長(zhǎng)方體鋼坯的表面積,最后比較大小即可.解析:設(shè)鍛造后長(zhǎng)方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長(zhǎng)方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長(zhǎng)方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
從而為列方程找等量關(guān)系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個(gè)小組,為增強(qiáng)小組討論結(jié)果的展示起到了較好的作用.環(huán)節(jié)3中通過(guò)讓學(xué)生自己設(shè)計(jì)表格為討論的得出起到輔助作用.2.相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)本節(jié)課的設(shè)計(jì)中,通過(guò)學(xué)生多次的動(dòng)手操作活動(dòng),引導(dǎo)學(xué)生進(jìn)行探索,使學(xué)生確實(shí)是在舊知識(shí)的基礎(chǔ)上探求新內(nèi)容,探索的過(guò)程是沒(méi)有難度的任何學(xué)生都會(huì)動(dòng)手操作,每個(gè)學(xué)生都有體會(huì)的過(guò)程,都有感悟的可能,這種形式讓學(xué)生切身去體驗(yàn)問(wèn)題的情景,從而進(jìn)一步幫助學(xué)生理解比較復(fù)雜的問(wèn)題,再把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題.3.注意改進(jìn)的方面本節(jié)課由于構(gòu)題新穎有趣,所以一開始就抓住了學(xué)生的求知欲望,課堂氣氛活躍,討論問(wèn)題積極主動(dòng).但由于學(xué)生發(fā)表自己的想法較多,使得教學(xué)時(shí)間不能很好把握,導(dǎo)致課堂練習(xí)時(shí)間緊張,今后予以改進(jìn).
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過(guò)程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒(méi)有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒(méi)有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒(méi)有實(shí)數(shù)根.沒(méi)有特殊要求時(shí),一般不用配方法.
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過(guò)程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
活動(dòng)四:自主學(xué)習(xí),尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過(guò)程中必須以大于1/2AB的長(zhǎng)為半徑畫???”同桌演示尺規(guī)作圖。最后折紙驗(yàn)證,使整個(gè)學(xué)習(xí)過(guò)程更加嚴(yán)謹(jǐn)。我將用下面這個(gè)課件給學(xué)生展示作圖過(guò)程。再次回顧情境,讓學(xué)生完成情境中的問(wèn)題。(三)講練結(jié)合,鞏固新知第一個(gè)題目是直接運(yùn)用性質(zhì)解決問(wèn)題,比較簡(jiǎn)單,面向全體學(xué)生。我還設(shè)計(jì)了第二個(gè)題目,想訓(xùn)練學(xué)生審題的能力。(四)課堂小結(jié)在學(xué)生們共同歸納總結(jié)本節(jié)課的過(guò)程中,讓學(xué)生獲得數(shù)學(xué)思考上的提高和感受成功的喜悅并進(jìn)一步系統(tǒng)地完善本節(jié)課的知識(shí)。(五)當(dāng)堂檢測(cè)為了檢測(cè)學(xué)生學(xué)習(xí)情況,我設(shè)計(jì)了當(dāng)堂檢測(cè)。第一個(gè)題目,讓學(xué)生學(xué)會(huì)轉(zhuǎn)化的思想來(lái)解決問(wèn)題;第二個(gè)題目練習(xí)尺規(guī)作圖。
一是先用計(jì)算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學(xué)生探索數(shù)學(xué)規(guī)律的興趣,為下面的數(shù)學(xué)探險(xiǎn)作鋪墊。二是數(shù)學(xué)探險(xiǎn)。在這個(gè)步驟中,我先出示8個(gè)1乘8個(gè)1,學(xué)生用計(jì)算器計(jì)算的答案肯定不一樣,因?yàn)閷W(xué)生帶來(lái)的計(jì)算器所能顯示的數(shù)位不一樣,而且這些計(jì)算器所能顯示的數(shù)位都不夠用,也就是這道題目計(jì)算器不能解決。這時(shí)我提問(wèn):“你覺(jué)得問(wèn)題出在哪兒?是我們錯(cuò)了,還是計(jì)算器錯(cuò)了?你能想辦法解決嗎?請(qǐng)四人小組討論一下解決方案?!边@樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問(wèn)題的需要和欲望。在學(xué)生找不到更好的解決方法時(shí),引導(dǎo)學(xué)生向書本請(qǐng)教,完成課本第101頁(yè)想想做做的第四題。讓學(xué)生利用計(jì)算器算出前5題的得數(shù),引導(dǎo)學(xué)生通過(guò)觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個(gè)算式,發(fā)展學(xué)生的合情推理能力,同時(shí)也讓學(xué)生領(lǐng)略了數(shù)學(xué)的神奇。
(六)當(dāng)堂達(dá)標(biāo)(練習(xí)二、三 10分鐘)練習(xí)二讓學(xué)生口答,通過(guò)練習(xí),鞏固學(xué)生對(duì)直線、射線、線段表示方法的掌握。練習(xí)三讓學(xué)生去黑板板演,教師檢驗(yàn)對(duì)錯(cuò)并重點(diǎn)強(qiáng)調(diào)幾何語(yǔ)言的表述。文字語(yǔ)言和圖形語(yǔ)言之間的轉(zhuǎn)化是難點(diǎn),著重練習(xí)文字語(yǔ)言向圖形語(yǔ)言的轉(zhuǎn)化,提高幾何語(yǔ)言的理解與運(yùn)用能力。當(dāng)堂達(dá)標(biāo)是檢查學(xué)習(xí)效果、鞏固知識(shí)、提高能力的重要手段。通過(guò)練習(xí),學(xué)生會(huì)體驗(yàn)到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時(shí)獲得信息反饋,以便課下查漏補(bǔ)缺。 (七)小結(jié)(3分鐘)教師提問(wèn)“這節(jié)課我們學(xué)了哪些知識(shí)?”請(qǐng)學(xué)生回答,教師做適當(dāng)補(bǔ)充。課堂小結(jié)對(duì)一節(jié)課起著“畫龍點(diǎn)晴”的作用,它能體現(xiàn)一節(jié)課所講的知識(shí)和數(shù)學(xué)思想。因此,在小結(jié)時(shí),教師引導(dǎo)學(xué)生概括本節(jié)內(nèi)容的重點(diǎn)。
接著引導(dǎo)學(xué)生進(jìn)一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過(guò)程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學(xué)生的思考經(jīng)歷由一般到特殊的過(guò)程。2.截面是其他形狀學(xué)生先猜想正方體的截面還有可能是什么形狀,再利用實(shí)驗(yàn)操作型課件對(duì)正方體進(jìn)行無(wú)限次的切截,讓學(xué)生在無(wú)限次切截的過(guò)程中體會(huì)截面產(chǎn)生和變化的整個(gè)過(guò)程,發(fā)現(xiàn)截面產(chǎn)生和變化的規(guī)律。學(xué)生從切截活動(dòng)中發(fā)現(xiàn)猜想時(shí)沒(méi)有想到的截面圖形,體會(huì)到探索的樂(lè)趣。教師再引導(dǎo)學(xué)生歸納正方體截面邊數(shù)的規(guī)律。學(xué)生的認(rèn)知得到升華。接著引導(dǎo)學(xué)生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學(xué)生先猜想圓柱體的截面可能是什么形狀,教師利用實(shí)驗(yàn)操作型課件對(duì)圓柱體進(jìn)行無(wú)限次的切截,學(xué)生觀察截面形狀。
還有其他解法嗎?從中讓學(xué)生體會(huì)解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗(yàn)的方法,鼓勵(lì)他們養(yǎng)成檢驗(yàn)的習(xí)慣)5、提出問(wèn)題:我們觀察上面方程的變形過(guò)程,從中觀察變化的項(xiàng)的規(guī)律是什么?多媒體展示上面變形的過(guò)程,讓學(xué)生觀察在變形過(guò)程中,變化的項(xiàng)的變化規(guī)律,引出新知識(shí).師提出問(wèn)題:1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).
1.上述演示中,題目中的哪些項(xiàng)改變了在原方程中的位置?怎樣變的?2.改變的項(xiàng)有什么變化?學(xué)生活動(dòng):分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報(bào)教師,最好分四組,這樣節(jié)省時(shí)間.師總結(jié)學(xué)生活動(dòng)的結(jié)果:-2x改變符號(hào)后從等號(hào)的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊的變形叫做移項(xiàng).這里應(yīng)注意移項(xiàng)要改變符號(hào).(三)理解性質(zhì),應(yīng)用鞏固師提出問(wèn)題:我們可以回過(guò)頭來(lái),想一想剛解過(guò)的方程哪個(gè)變化過(guò)程可以叫做移項(xiàng).學(xué)生活動(dòng):要求學(xué)生對(duì)課前解方程的變形能說(shuō)出哪一過(guò)程是移項(xiàng).對(duì)比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動(dòng):把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項(xiàng)變形解;三、四組同學(xué)(1)(2)題用移項(xiàng)變形解,(3)(4)題用等式性質(zhì)解.師提出問(wèn)題:用哪種方法解方程更簡(jiǎn)便?解方程的步驟是什么?(答:移項(xiàng)法;移項(xiàng)、化簡(jiǎn)、檢驗(yàn).)