反思感悟用基底表示空間向量的解題策略1.空間中,任一向量都可以用一個(gè)基底表示,且只要基底確定,則表示形式是唯一的.2.用基底表示空間向量時(shí),一般要結(jié)合圖形,運(yùn)用向量加法、減法的平行四邊形法則、三角形法則,以及數(shù)乘向量的運(yùn)算法則,逐步向基向量過渡,直至全部用基向量表示.3.在空間幾何體中選擇基底時(shí),通常選取公共起點(diǎn)最集中的向量或關(guān)系最明確的向量作為基底,例如,在正方體、長方體、平行六面體、四面體中,一般選用從同一頂點(diǎn)出發(fā)的三條棱所對(duì)應(yīng)的向量作為基底.例2.在棱長為2的正方體ABCD-A1B1C1D1中,E,F分別是DD1,BD的中點(diǎn),點(diǎn)G在棱CD上,且CG=1/3 CD(1)證明:EF⊥B1C;(2)求EF與C1G所成角的余弦值.思路分析選擇一個(gè)空間基底,將(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)證明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?與(C_1 G) ?夾角的余弦值即可.(1)證明:設(shè)(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,則{i,j,k}構(gòu)成空間的一個(gè)正交基底.
4.寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)試驗(yàn)的結(jié)果.(1)一個(gè)袋中裝有8個(gè)紅球,3個(gè)白球,從中任取5個(gè)球,其中所含白球的個(gè)數(shù)為X.(2)一個(gè)袋中有5個(gè)同樣大小的黑球,編號(hào)為1,2,3,4,5,從中任取3個(gè)球,取出的球的最大號(hào)碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個(gè)紅球贏2元,而每取出一個(gè)白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個(gè)球全是紅球;X=1表示取1個(gè)白球,4個(gè)紅球;X=2表示取2個(gè)白球,3個(gè)紅球;X=3表示取3個(gè)白球,2個(gè)紅球.(2)X可取3,4,5.X=3表示取出的球編號(hào)為1,2,3;X=4表示取出的球編號(hào)為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號(hào)為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個(gè)球全是紅球;ξ=7表示取1個(gè)白球,4個(gè)紅球;ξ=4表示取2個(gè)白球,3個(gè)紅球;ξ=1表示取3個(gè)白球,2個(gè)紅球.
3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓(xùn)練2. A、B兩個(gè)投資項(xiàng)目的利潤率分別為隨機(jī)變量X1和X2,根據(jù)市場(chǎng)分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個(gè)項(xiàng)目上各投資100萬元, Y1和Y2分別表示投資項(xiàng)目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對(duì)于投資者有什么建議? 解:(1)題目可知,投資項(xiàng)目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項(xiàng)目比投資B項(xiàng)目期望收益要高;同時(shí) ,說明投資A項(xiàng)目比投資B項(xiàng)目的實(shí)際收益相對(duì)于期望收益的平均波動(dòng)要更大.因此,對(duì)于追求穩(wěn)定的投資者,投資B項(xiàng)目更合適;而對(duì)于更看重利潤并且愿意為了高利潤承擔(dān)風(fēng)險(xiǎn)的投資者,投資A項(xiàng)目更合適.
對(duì)于離散型隨機(jī)變量,可以由它的概率分布列確定與該隨機(jī)變量相關(guān)事件的概率。但在實(shí)際問題中,有時(shí)我們更感興趣的是隨機(jī)變量的某些數(shù)字特征。例如,要了解某班同學(xué)在一次數(shù)學(xué)測(cè)驗(yàn)中的總體水平,很重要的是看平均分;要了解某班同學(xué)數(shù)學(xué)成績是否“兩極分化”則需要考察這個(gè)班數(shù)學(xué)成績的方差。我們還常常希望直接通過數(shù)字來反映隨機(jī)變量的某個(gè)方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運(yùn)動(dòng)員射中目標(biāo)靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設(shè)甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當(dāng)n足夠大時(shí),頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個(gè)平均值的大小可以反映甲運(yùn)動(dòng)員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.
一、 問題導(dǎo)學(xué)前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀(jì)錄和創(chuàng)紀(jì)錄的時(shí)間等,都是數(shù)值變量,數(shù)值變量的取值為實(shí)數(shù).其大小和運(yùn)算都有實(shí)際含義.在現(xiàn)實(shí)生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關(guān)聯(lián)性或相互影響的問題.例如,就讀不同學(xué)校是否對(duì)學(xué)生的成績有影響,不同班級(jí)學(xué)生用于體育鍛煉的時(shí)間是否有差別,吸煙是否會(huì)增加患肺癌的風(fēng)險(xiǎn),等等,本節(jié)將要學(xué)習(xí)的獨(dú)立性檢驗(yàn)方法為我們提供了解決這類問題的方案。在討論上述問題時(shí),為了表述方便,我們經(jīng)常會(huì)使用一種特殊的隨機(jī)變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機(jī)變量稱為分類變量.分類變量的取值可以用實(shí)數(shù)表示,例如,學(xué)生所在的班級(jí)可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時(shí)候,這些數(shù)值只作為編號(hào)使用,并沒有通常的大小和運(yùn)算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關(guān)聯(lián)性問題.
溫故知新 1.離散型隨機(jī)變量的定義可能取值為有限個(gè)或可以一一列舉的隨機(jī)變量,我們稱為離散型隨機(jī)變量.通常用大寫英文字母表示隨機(jī)變量,例如X,Y,Z;用小寫英文字母表示隨機(jī)變量的取值,例如x,y,z.隨機(jī)變量的特點(diǎn): 試驗(yàn)之前可以判斷其可能出現(xiàn)的所有值,在試驗(yàn)之前不可能確定取何值;可以用數(shù)字表示2、隨機(jī)變量的分類①離散型隨機(jī)變量:X的取值可一、一列出;②連續(xù)型隨機(jī)變量:X可以取某個(gè)區(qū)間內(nèi)的一切值隨機(jī)變量將隨機(jī)事件的結(jié)果數(shù)量化.3、古典概型:①試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);②每個(gè)基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點(diǎn)數(shù)X有哪些值?取每個(gè)值的概率是多少? 因?yàn)閄取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示
在解決問題的過程中,學(xué)生使用到了生活中常見的工具——標(biāo)桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺到利用身邊的工具完全可以達(dá)到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實(shí)際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當(dāng)學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會(huì)形成主動(dòng)尋求知識(shí)的內(nèi)在動(dòng)力。學(xué)生在這種學(xué)習(xí)情境中主動(dòng)學(xué)習(xí)到知識(shí),比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問題意識(shí)。問題解決后,教師應(yīng)讓學(xué)生從解決的問題出發(fā),通過對(duì)題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問題,這樣不僅讓學(xué)生掌握了更多的知識(shí),還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。
(三)解釋、應(yīng)用和發(fā)展問題4:如果測(cè)量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學(xué)生參照書本99頁,用測(cè)角儀測(cè)量塔高的方法.這個(gè)物體的底部不能到達(dá)。)(1)請(qǐng)你設(shè)計(jì)一個(gè)測(cè)量小山高度的方法:要求寫出測(cè)量步驟和必須的測(cè)量數(shù)據(jù)(用字母表示),并畫出測(cè)量平面圖形;(2)用你測(cè)量的數(shù)據(jù)(用字母表示),寫出計(jì)算小山高度的方法。過程: (1) 學(xué)生觀察、思考、建模、自行解決(3) 學(xué)生間討論交流后,教師展示部分學(xué)生的解答過程(重點(diǎn)關(guān)注:1.學(xué)生能否發(fā)現(xiàn)解決問題的途徑;學(xué)生在引導(dǎo)下,能否借助方程或方程組來解決問題;學(xué)生的自學(xué)能力.2.關(guān)注學(xué)生克服困難的勇氣和堅(jiān)強(qiáng)的意志力。3.繼續(xù)關(guān)注學(xué)生中出現(xiàn)的典型錯(cuò)誤。)(設(shè)計(jì)意圖: 讓學(xué)生進(jìn)一步熟悉如何將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)模型,并能用解直角三角形的知識(shí)解決簡(jiǎn)單的實(shí)際問題,發(fā)展學(xué)生的應(yīng)用意識(shí)和應(yīng)用能力。
a矛盾的同一性是矛盾雙方相互吸引、相互聯(lián)結(jié)的屬性和趨勢(shì)。它有兩方面的含義:一是矛盾雙方相互依賴,一方的存在以另一方的存在為前提,雙方共處于一個(gè)統(tǒng)一體中;同一事物都有對(duì)立面和統(tǒng)一面兩個(gè)方面,一方的存在以另一方為條件,彼此誰都離不開誰(形影想隨、一個(gè)巴掌拍不響、不是冤家不聚頭)。【舉例】P67漫畫:他敢剪嗎?懸掛在山崖上的兩個(gè)人構(gòu)成一種動(dòng)態(tài)的平衡?!九e例】磁鐵(S極和N極);沒有上就沒有下、沒有香就沒有臭、沒有福就無所謂禍;【舉例】父子關(guān)系(父親之所以是父親,因?yàn)橛袃鹤?,兒子之所以是兒子,因?yàn)橛懈赣H);師生關(guān)系;二是矛盾雙方相互貫通,即相互滲透、相互包含,在一定條件下可以相互轉(zhuǎn)化。 【相關(guān)銜接】P68生物變性現(xiàn)象,雌雄轉(zhuǎn)化現(xiàn)象【舉例】生產(chǎn)與消費(fèi)具有直接統(tǒng)一性
教師姓名 課程名稱數(shù)學(xué)班 級(jí) 授課日期 授課順序 章節(jié)名稱§2.1 不等式的基本性質(zhì)教 學(xué) 目 標(biāo)知識(shí)目標(biāo):1、理解不等式的概念 2、掌握不等式的基本性質(zhì) 技能目標(biāo):1、會(huì)比較兩個(gè)數(shù)的大小 2、會(huì)用做差法比較兩個(gè)整式的大小 情感目標(biāo):體會(huì)不等式在日常生活中的應(yīng)用,感受數(shù)學(xué)的有用性教學(xué) 重點(diǎn) 和 難點(diǎn) 重點(diǎn): 不等式的概念和基本性質(zhì) 難點(diǎn): 1、會(huì)比較兩個(gè)整式的大小 2、能根據(jù)應(yīng)用題的表述,列出相應(yīng)的表達(dá)式教 學(xué) 資 源《數(shù)學(xué)》(第一冊(cè)) 多媒體課件評(píng) 估 反 饋課堂提問 課堂練習(xí)作 業(yè)習(xí)題2.1課后記
【教學(xué)目標(biāo)】知識(shí)目標(biāo):⑴ 理解函數(shù)的單調(diào)性與奇偶性的概念;⑵ 會(huì)借助于函數(shù)圖像討論函數(shù)的單調(diào)性;⑶理解具有奇偶性的函數(shù)的圖像特征,會(huì)判斷簡(jiǎn)單函數(shù)的奇偶性.能力目標(biāo):⑴ 通過利用函數(shù)圖像研究函數(shù)性質(zhì),培養(yǎng)學(xué)生的觀察能力;⑵ 通過函數(shù)奇偶性的判斷,培養(yǎng)學(xué)生的數(shù)學(xué)思維能力.【教學(xué)重點(diǎn)】⑴ 函數(shù)單調(diào)性與奇偶性的概念及其圖像特征;⑵ 簡(jiǎn)單函數(shù)奇偶性的判定.【教學(xué)難點(diǎn)】函數(shù)奇偶性的判斷.(*函數(shù)單調(diào)性的判斷)【教學(xué)設(shè)計(jì)】(1)用學(xué)生熟悉的主題活動(dòng)將所學(xué)的知識(shí)有機(jī)的整合在一起;(2)引導(dǎo)學(xué)生去感知數(shù)學(xué)的數(shù)形結(jié)合思想.通過圖形認(rèn)識(shí)特征,由此定義性質(zhì),再利用圖形(或定義)進(jìn)行性質(zhì)的判斷;(3)在問題的思考、交流、解決中培養(yǎng)和發(fā)展學(xué)生的思維能力.【教學(xué)備品】教學(xué)課件.【課時(shí)安排】3課時(shí).(90分鐘)【教學(xué)過程】
創(chuàng)設(shè)情景 興趣導(dǎo)入問題 觀察鐘表,如果當(dāng)前的時(shí)間是2點(diǎn),那么時(shí)針走過12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?再經(jīng)過12個(gè)小時(shí)后,顯示的時(shí)間是多少呢?.解決每間隔12小時(shí),當(dāng)前時(shí)間2點(diǎn)重復(fù)出現(xiàn).推廣類似這樣的周期現(xiàn)象還有哪些? 動(dòng)腦思考 探索新知概念 對(duì)于函數(shù),如果存在一個(gè)不為零的常數(shù),當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,并且等式成立,那么,函數(shù)叫做周期函數(shù),常數(shù)叫做這個(gè)函數(shù)的一個(gè)周期. 由于正弦函數(shù)的定義域是實(shí)數(shù)集R,對(duì),恒有,并且,因此正弦函數(shù)是周期函數(shù),并且 ,, ,及,,都是它的周期.通常把周期中最小的正數(shù)叫做最小正周期,簡(jiǎn)稱周期,仍用表示.今后我們所研究的函數(shù)周期,都是指最小正周期.因此,正弦函數(shù)的周期是.
課題序號(hào) 授課班級(jí) 授課課時(shí)2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點(diǎn),會(huì)用符號(hào)表示點(diǎn)、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會(huì)應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會(huì)用斜二測(cè)畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點(diǎn)用適當(dāng)?shù)姆?hào)表示點(diǎn)、線、面之間的關(guān)系;會(huì)用斜二測(cè)畫法畫立體圖形的直觀圖教學(xué)難點(diǎn)從平面幾何向立體幾何的過渡,培養(yǎng)學(xué)生的空間想象能力.更新補(bǔ)充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動(dòng)手畫,動(dòng)腦想,但立體幾何的語言及想象能力差
(4)提出問題:三種運(yùn)輸方式有哪些異同 組織學(xué)生分析填表,反饋和糾正.提出問題:影響自由擴(kuò)散,協(xié)助擴(kuò)散和主動(dòng)運(yùn)輸速度的主要因素各是什么 畫出細(xì)胞對(duì)某物的自由擴(kuò)散,協(xié)助擴(kuò)散和主動(dòng)運(yùn)輸速度隨細(xì)胞外濃度的改變而變化的曲線圖組織學(xué)生分組討論,并作圖,展示各組的成果.教學(xué)說明:本環(huán)節(jié)鞏固理論知識(shí)是對(duì)課本知識(shí)擴(kuò)展和對(duì)重點(diǎn),難點(diǎn)內(nèi)容的深入理解和總結(jié),只有理解了三種運(yùn)輸方式的異同,才能完成本環(huán)節(jié)教學(xué)任務(wù),既突顯書本知識(shí),又培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作的精神,提高學(xué)生制做圖表的能力和抽象化思維能力的形成.2.大分子的運(yùn)輸引導(dǎo)學(xué)生回憶分泌蛋白的分泌過程,得出胞吐現(xiàn)象,提出問題:那大家知道白細(xì)胞是如何吃掉病菌的嗎 顯示有關(guān)圖片.強(qiáng)調(diào):胞吞和胞吐作用都需要能量提出問題:胞吞和胞吐體現(xiàn)了細(xì)胞膜結(jié)構(gòu)的特點(diǎn)是什么 與書本前面知識(shí)相聯(lián)系.(四)技能訓(xùn)練指導(dǎo)學(xué)生就《技能訓(xùn)練》部分進(jìn)行討論五,反饋練習(xí)1.教師小結(jié)幾種運(yùn)輸方式,特別是自由擴(kuò)散,協(xié)助擴(kuò)散和主動(dòng)運(yùn)輸?shù)奶攸c(diǎn)
【課外延伸】閱讀思考:1、改革開放以來,東西方文明的交流、碰撞更加劇烈。對(duì)于外來文化,目前有不同的觀點(diǎn),現(xiàn)引入兩種觀點(diǎn):觀點(diǎn)1:這是一種進(jìn)步。改革開放以來,中國不斷發(fā)展,這時(shí)候舊的文化顯然是不合時(shí)宜的,西方文化的進(jìn)入,給我們帶來了新的生活方式和生活態(tài)度,中國逐漸改掉了一些陋習(xí),與世界接軌。觀點(diǎn)2:這是一種文化侵略。西方文化的進(jìn)入,使中國傳統(tǒng)文化一步步淪喪,特別是我們過著西方圣誕節(jié)時(shí),中國的傳統(tǒng)節(jié)日端午節(jié)已被韓國申報(bào)為非物質(zhì)文化遺產(chǎn)。這告訴我們,我們應(yīng)該保護(hù)我們的傳統(tǒng)文化。面對(duì)東西方文化的交匯、碰撞,你認(rèn)為該怎樣正確看待外來文化和傳統(tǒng)文化?請(qǐng)寫篇小論文闡述你的觀點(diǎn)。2、設(shè)計(jì)以下表格:利用搜集的資料按照“衣、食、住、行、風(fēng)俗”五部分進(jìn)行比較,再將現(xiàn)代社會(huì)物質(zhì)生活和習(xí)俗細(xì)分為“辛亥革命前和辛亥革命后”兩部分內(nèi)容進(jìn)行比較。
★教學(xué)總結(jié):(1)我國衣著服飾變化的三大階段第一階段(鴉片戰(zhàn)爭(zhēng)后到新中國的建立):這一階段的階段特征為中式與西式、傳統(tǒng)和現(xiàn)代服飾并存男裝:長袍馬褂、西裝、中山裝 女裝:旗袍(新式與舊式)第二階段(新中國建立后到十一屆三中全會(huì)):這一時(shí)期由于政治上的影響,階段特征為衣著樸素,與革命相關(guān)的服飾成為主流男裝:列寧裝、中山裝、綠軍裝女裝:列寧裝、布拉基、綠軍裝第三階段(十一屆三中全會(huì)后):階段特征為與世界接軌,異彩紛呈;具體表現(xiàn)在,服飾由最基本的防寒保暖向美觀大方轉(zhuǎn)變,各種款式的服裝層出不窮現(xiàn)在的服裝是色彩鮮艷、款式多樣,什么牛仔服、休閑服、西裝、T恤衫、晚禮服,真是不勝枚舉。每年服裝的流行色、流行款式不斷改變,大街上的姑娘和小伙子永遠(yuǎn)領(lǐng)導(dǎo)著時(shí)裝新潮流。模特表演、模特廣告和模特大賽已成為人們穿著方面不可缺少的內(nèi)容。
(四)、成果交流教師出示成熟植物細(xì)胞圖,提出原生質(zhì)層的概念,小組交流,教師點(diǎn)撥,得出結(jié)論:1、原生質(zhì)層相當(dāng)于半透膜2、外界溶液濃度大于細(xì)胞液濃度---細(xì)胞失水(質(zhì)壁分離)3、外界溶液濃度小于細(xì)胞液濃度---細(xì)胞失水(質(zhì)壁分離復(fù)原)教師出示有關(guān)細(xì)胞選擇性吸收離子的數(shù)據(jù)資料。引導(dǎo)學(xué)生發(fā)現(xiàn)并探究出不同植物對(duì)同一離子吸收量不同,同一植物對(duì)不同離子吸收量也不同,得出結(jié)論:4、細(xì)胞膜具有選擇透過性(五)拓展延伸如何用已有知識(shí)和技能鑒別兩種蔗糖溶液濃度的大?。坑?.1g/mg 0.8g/mg的蔗糖溶液分別做前面的探究實(shí)驗(yàn)會(huì)有什么不同的結(jié)果?你得出的結(jié)論是什么?引導(dǎo)學(xué)生總結(jié)出發(fā)生質(zhì)壁分離和質(zhì)壁分離復(fù)原的條件。五、板書設(shè)計(jì)好的板書就像一份微型教案,此板書力圖全面而簡(jiǎn)明的將授課內(nèi)容傳遞給學(xué)生,清晰直觀,便于學(xué)生理解和記憶,理清文章脈絡(luò)。
步驟四:展示點(diǎn)評(píng)、質(zhì)疑探究展示小組展示討論論成果,要求每組B、C層次學(xué)生進(jìn)行展示。展示結(jié)束后由點(diǎn)評(píng)同學(xué)對(duì)展示結(jié)果進(jìn)行點(diǎn)評(píng),要求先點(diǎn)評(píng)對(duì)錯(cuò);再點(diǎn)評(píng)思路方法和應(yīng)注意的問題。既要有結(jié)論,又要有分析,力爭(zhēng)有相關(guān)的總結(jié)和拓展。下面的同學(xué)注意傾聽、思考,關(guān)鍵內(nèi)容做好筆記,有補(bǔ)充或不明白的地方及時(shí)、大膽提出,力爭(zhēng)全部過關(guān),解決疑難點(diǎn)。根據(jù)學(xué)生點(diǎn)評(píng)結(jié)果,教師適當(dāng)點(diǎn)評(píng)拓展。步驟五:拓展提升、總結(jié)升華簡(jiǎn)單扼要的課堂小結(jié),系統(tǒng)回顧知識(shí),強(qiáng)化學(xué)生對(duì)于生態(tài)系統(tǒng)物質(zhì)循環(huán)的認(rèn)識(shí)。環(huán)節(jié)三:課后檢測(cè)布置訓(xùn)練內(nèi)容,鞏固知識(shí)。五、課后反思:本堂課采用我校163高效課堂模式,通過小組合作探究、展示自我、互相點(diǎn)評(píng)的方式完成整堂課的教學(xué)內(nèi)容,充分突出了新課標(biāo)中以學(xué)生為主體的指導(dǎo)思想。教學(xué)過程中,依據(jù)學(xué)生的個(gè)性差異,提出不同要求,布置不同任務(wù),讓不同層次的學(xué)生都能參與其中,調(diào)動(dòng)全體學(xué)生的積極性,促進(jìn)全體學(xué)生的發(fā)展。
環(huán)節(jié)三案例分析突出難點(diǎn)這一環(huán)節(jié),我將用多媒體展示我國反腐行動(dòng),將一個(gè)個(gè)貪污腐敗者給予法律制裁的案例和東突分子分裂活動(dòng)的例子,來得出我國專政的職能。這些例子具有典型性和時(shí)效性,能讓學(xué)生容易從例子中得出知識(shí)點(diǎn),引導(dǎo)學(xué)生理解我國的專政是對(duì)極少數(shù)敵人實(shí)行的專政。并通過《反分裂法》的制定,讓學(xué)生討論為什么我國既要實(shí)行民主職能又實(shí)行專政職能,以此來分析民主與專政的關(guān)系(區(qū)別和聯(lián)系)。培養(yǎng)學(xué)生獲取信息的能力,自主學(xué)習(xí)的能力以及全面看問題的能力,再結(jié)合教師的講授,給學(xué)生一種茅塞頓開的感覺。環(huán)節(jié)四 情景回歸 情感升華這一環(huán)節(jié),我將設(shè)置分組討論,讓學(xué)生們分別從人民民主專政的重要地位、“民主”與“專政”這兩項(xiàng)職能、改革開放的歷史條件下新時(shí)期內(nèi)容三個(gè)方面來分析為什么堅(jiān)持人民民主是正義的事,討論后每組派出代表來發(fā)表各自組的結(jié)論,得出我國要堅(jiān)持人民民主專政。通過小組討論,使學(xué)生學(xué)會(huì)在合作中學(xué)習(xí),提高學(xué)生的語言表達(dá)和思維能力。
三、堅(jiān)持人民民主專政教師活動(dòng):請(qǐng)同學(xué)們閱讀教材P7頁,思考下列問題:為什么要堅(jiān)持人民民主專政?現(xiàn)階段如何堅(jiān)持人民民主專政?學(xué)生活動(dòng):閱讀課本,找出問題。1、堅(jiān)持人民民主專政的重要性(1)堅(jiān)持人民民主專政是四項(xiàng)基本原則之一,是我國的立國之本。(2)堅(jiān)持人民民主專政是現(xiàn)代化建設(shè)的政治保證。堅(jiān)持人民民主,才能調(diào)動(dòng)人民現(xiàn)代化建設(shè)的積極性;堅(jiān)持對(duì)敵對(duì)勢(shì)力的專政,才能保障人民民主,維護(hù)國家安定。2、堅(jiān)持人民民主專政的新的時(shí)代內(nèi)容突出經(jīng)濟(jì)建設(shè)服務(wù)職能;為改革開放和現(xiàn)代化建設(shè)創(chuàng)造良好國內(nèi)外環(huán)境;重視法制建設(shè),依法治國;發(fā)展人民民主,加強(qiáng)民主制度建設(shè)。(三)課堂總結(jié)、點(diǎn)評(píng)本節(jié)內(nèi)容講述了我國的國家性質(zhì)的有關(guān)知識(shí),懂得我國是人民民主專政的社會(huì)主義國家,其本質(zhì)是人民當(dāng)家作主,我國的人民民主具有廣泛性和真實(shí)性,是真正的大多數(shù)人的統(tǒng)治,必須堅(jiān)持人民民主專政。