第六課“師生之間”是七年級上冊第三單元第一課。本課基于初中學(xué)生自我意識 增強、思維能力發(fā)展的特點,著力處理青春期的獨立性與依賴性的矛盾,幫助學(xué)生深 入認識和理解自己的老師。在感受老師對自己的關(guān)愛和教育的同時,學(xué)會主動關(guān)心、 幫助老師,與老師建立一種良好的師生關(guān)系。本課與第七課“親情之愛”內(nèi)容繼承了 孝親敬長的中華傳統(tǒng)美德,落實了社會主義核心價值觀的基本內(nèi)容,指引學(xué)生正確處 理師生關(guān)系、親子關(guān)系和家庭關(guān)系,是初中學(xué)生人際交往的拓展與延伸。第一框“走近老師”,從教師的職業(yè)特點和責(zé)任使命等角度,引導(dǎo)學(xué)生進一步了解 老師,理解老師的不易,培養(yǎng)尊敬老師的情感,學(xué)會積極接納不同風(fēng)格的老師,為學(xué) 習(xí)第二框的內(nèi)容奠定情感基礎(chǔ)。第二框“師生交往”,引導(dǎo)學(xué)生懂得“教學(xué)相長”的道理,強調(diào)師生之間的雙向互動,引導(dǎo)學(xué)生正確對待老師的引領(lǐng)和指導(dǎo),全面認識師生交往的實質(zhì),努力建立和諧 的師生關(guān)系,達到師生交往理想而美好的狀態(tài)。
二、教材分析跑,是小學(xué)體育教學(xué)的基本項目之一,本節(jié)課是小學(xué)體育課教學(xué)中最為基礎(chǔ)的一節(jié)課,也是較為單一、枯燥的一節(jié)課,站立式起跑姿勢的掌握,對發(fā)展學(xué)生起跑時的反應(yīng)能力,提高學(xué)生跑的成績有著重要的作用,因此本課試圖通過多種學(xué)練方法,提高學(xué)生的學(xué)練興趣,讓學(xué)生認識到掌握站立式起跑的正確動作的重要性,提高學(xué)生對站立式起跑學(xué)習(xí)的重視程度,以便教學(xué)目標(biāo)的更好達成。三、學(xué)情分析本課設(shè)計對象為五年級學(xué)生,他們善于模仿,對新生事物接受能力強,有好奇心,樂于展示自我但自控能力欠缺是這一年齡段的顯著特點,大部分學(xué)生對短距離跑的練習(xí)非常感興趣,對站立式起跑有所了解,但是動作要領(lǐng)不清楚。本課通過教師適當(dāng)?shù)狞c撥,使活潑好動的低年級學(xué)生通過在反復(fù)的游戲活動中,主動探索并初步掌握淺易的生活知識和學(xué)習(xí)簡單的動作技能,同時多用激勵性語言,激發(fā)學(xué)生的學(xué)習(xí)動機,以便進一步促進學(xué)生的學(xué)習(xí)興趣,努力提高動作質(zhì)量。
二、活動目標(biāo):1、利用紙棒進行活動,學(xué)習(xí)跳竹竿游戲,發(fā)展彈跳能力。2、體驗與同伴合作游戲帶來的快樂。3、愿意積極想辦法解決活動中遇到的困難。三、活動準(zhǔn)備:經(jīng)驗準(zhǔn)備:幼兒觀看過錄像物質(zhì)準(zhǔn)備:人手一根紙棒(長度為1米)。錄音機,磁帶。四、活動過程:1、開始部分:幼兒隨音樂利用紙棒進行隊列練習(xí)。導(dǎo)語:今天天氣真不錯,我們騎著馬出去玩玩吧!(幼兒隨音樂的變化“騎馬”變雙圓----大圓----小圓---- “坐馬車” )反思:活動開始部分設(shè)計了隨音樂利用紙棒進行隊列練習(xí)在這一環(huán)節(jié)中由兩隊“騎馬”變雙圓----變小圓----合作組合“坐馬車”體現(xiàn)了動靜交替的原則,讓幼兒初步嘗試了與同伴合作的快樂,同時也為下一個環(huán)節(jié)奠定了基礎(chǔ)。2、基本部分:(1)利用紙棒進行“一棒多玩”導(dǎo)語:紙棒可以和我們玩坐馬車的游戲,還可以和我們玩什么游戲呢?我們一起來試試,可以自己玩,也可以和小伙伴一起玩。(幼兒四散游戲)隊形:兩路縱隊(見附圖)(2)學(xué)習(xí)“跳竹竿”游戲A、講解游戲玩法導(dǎo)語:剛才小朋友用紙棒玩了許多游戲,今天老師要和大家用紙棒玩一個新游戲——跳竹竿,這個游戲可以三個或四個小朋友一起玩,其中兩個小朋友手拿竹竿面對面跪下,用竹竿同時分合敲擊,另一個小朋友在中間看準(zhǔn)竹竿的分合跳進或跳出。大家可以自己選擇小伙伴一起試一試。隊形:梯形隊(見附圖)(3)幼兒自由組合嘗試玩“跳竹竿”游戲隊形:四散(4)對幼兒在游戲過程中出現(xiàn)的情況及時進行指導(dǎo)(合作、交往方面)導(dǎo)語:你剛才和誰一起玩的?你們是怎么跳竹竿的?隊形:梯形隊(見附圖)(5)鼓勵幼兒創(chuàng)造性地玩“跳竹竿”游戲,師生共同參與。
(1)本周哪一天河流水位最高,哪一天河流水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?(2)與上周末相比,本周末河流的水位是上升還是下降了?解析:(1)先規(guī)定其中一個為正,則另一個就用負表示.理解表中的正負號表示的含義,根據(jù)條件計算出每天的水位即可求解;(2)只要觀察星期日的水位是正負即可.解:(1)前兩天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;則水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,則本周末河流的水位上升了0.7米.方法總結(jié):解此題的關(guān)鍵是分析題意列出算式,用的數(shù)學(xué)思想是轉(zhuǎn)化思想,即把實際問題轉(zhuǎn)化成數(shù)學(xué)問題.探究點二:有理數(shù)的加減混合運算在生活中的其他應(yīng)用
二.學(xué)情分析本次課的主體是七年級的學(xué)生——對學(xué)生的實際情況,學(xué)校情況,場地器材加以分析:本班16人,這個年齡段的學(xué)生活潑好動,思維活躍,想象力豐富,又比較自信,而他們的潛能需要老師來開發(fā)。怎樣才能把學(xué)生的這種潛能充分挖掘出來呢?怎樣才能把這堂課的內(nèi)容上的靈活多變呢?又如何在有限的課堂時間里提高學(xué)生的練習(xí)參與度?這對我來說是一個新的挑戰(zhàn)。
在入情入境中誦讀成韻 1.配樂范讀,想象畫面: ?。?)學(xué)生邊看插圖邊聽老師配樂朗讀,想象詩中所描繪的畫面?! 。?)學(xué)生自由交流想象中的畫面,老師激勵小結(jié)?! ☆A(yù)設(shè):山坡上的小草發(fā)芽了,嫩綠嫩綠的。黃鶯在空中飛來飛去。河堤旁的柳條發(fā)芽了,幾個下朋友放學(xué)回來,趁著東風(fēng),趕忙放起了風(fēng)箏…… 2.借助插圖,啟發(fā)想象:黃鶯一邊飛一邊干什么?(嘰嘰喳喳地叫)它好像在說什么? 再次啟發(fā)想象:春風(fēng)輕輕地吹來,柳條會怎樣呢?(輕輕擺動,好像在跳舞陶醉在了美麗的春色里……) 詩人高鼎看到這樣的景致寫下了這樣的詩句:出示“草長鶯飛二月天,拂堤楊柳醉春煙”。(學(xué)生齊讀) 讓我們想象著春天的美麗景色,有滋有味地誦讀。學(xué)生練讀、指名讀、引讀。 3.聯(lián)系生活,換位體驗,:在這樣美妙的春光里,沐浴著和煦的春風(fēng),(出示兒童放紙鳶圖片)孩子們放起風(fēng)箏,你們放過風(fēng)箏嗎?你放風(fēng)箏時是怎樣的心情?(學(xué)生自由發(fā)言)
(2)∵點G是BC的中點,BC=12,∴BG=CG=12BC=6.∵四邊形AGCD是平行四邊形,DC=10,AG=DC=10,在Rt△ABG中,根據(jù)勾股定理得AB=8,∴四邊形AGCD的面積為6×8=48.方法總結(jié):本題考查了平行四邊形的判定和性質(zhì),勾股定理,平行四邊形的面積,掌握定理是解題的關(guān)鍵.三、板書設(shè)計1.平行四邊形的判定定理3:對角線互相平分的四邊形是平行四邊形;2.平行線的距離;如果兩條直線互相平行,則其中一條直線上任意一點到另一條直線的距離都相等,這個距離稱為平行線之間的距離.3.平行四邊形判定和性質(zhì)的綜合.本節(jié)課的教學(xué)主要通過分組討論、操作探究以及合作交流等方式來進行,在探究兩條平行線間的距離時,要讓學(xué)生進行合作交流.在解決有關(guān)平行四邊形的問題時,要根據(jù)其判定和性質(zhì)綜合考慮,培養(yǎng)學(xué)生的邏輯思維能力.
一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且夾角相等的兩個三角形相似”的判定方法.2.經(jīng)歷兩個三角形相似的探索過程,體驗用類比、實驗操作、分析歸納得出數(shù)學(xué)結(jié)論的過程;通過畫圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗,激發(fā)學(xué)生探索知識的興趣,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性.3.能夠運用三角形相似的條件解決簡單的問題. 二、重點、難點1. 重點:掌握判定方法,會運用判定方法判定兩個三角形相似.2. 難點:(1)三角形相似的條件歸納、證明;(2)會準(zhǔn)確的運用兩個三角形相似的條件來判定三角形是否相似.3. 難點的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對應(yīng)相等的角不是兩條邊的夾角,這兩個三角形不一定相似,課堂練習(xí)2就是通過讓學(xué)生聯(lián)想、類比全等三角形中SSA條件下三角形的不確定性,來達到加深理解判定方法2的條件的目的的.
活動目的:(1)通過小組討論活動,讓學(xué)生理解坐標(biāo)系的特點,并能應(yīng)用特點解決問題。(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣。(3)在小組討論中培養(yǎng)學(xué)生勇于探索,團結(jié)協(xié)作的精神。第四環(huán)節(jié):練習(xí)隨堂練習(xí) (體現(xiàn)建立直角坐標(biāo)系的多樣性)(補充)某地為了發(fā)展城市群,在現(xiàn)有的四個中小城市A,B,C,D附近新建機場E,試建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并寫出各點的坐標(biāo)。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進步,從知識和能力上兩個方面總結(jié),老師予于肯定和鼓勵。目的:鼓勵學(xué)生大膽發(fā)言,敢于表達自己的觀點,同時學(xué)生之間可以相互學(xué)習(xí),共同提高,老師給予肯定和鼓勵,激發(fā)學(xué)生的學(xué)習(xí)熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習(xí)題5.5。B類:完成A類同時,補充:(1)已知點A到x軸、y軸的距離均為4,求A點坐標(biāo);(2)已知x軸上一點A(3,0),B(3,b),且AB=5,求b的值。
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
六、說學(xué)法本節(jié)課的學(xué)法主要是自主探究法、合作交流法。教法和學(xué)法是和諧統(tǒng)一的,相互聯(lián)系,密不可分。教學(xué)中要注意發(fā)揮學(xué)生的主體地位,充分調(diào)動學(xué)生的各種感官參與學(xué)習(xí),誘發(fā)其內(nèi)在的潛力,獨立主動的探索,使他們不僅學(xué)會,而且會學(xué)。學(xué)生通過小組合作的方式,自主探究設(shè)計出秋游方案,然后每個小組間進行交流,最后推選出最合理可行的方案。學(xué)生通過解決生活中的實際問題,從中發(fā)現(xiàn)與數(shù)學(xué)之間的聯(lián)系。并通過同伴間的交流、討論等多種方法制定出解決方案,他們從生活中抽象,在實踐中體驗,最后在討論中明理,從而得出了最佳的方案。七、說教學(xué)過程為了能很好地化解重點、突破難點達到預(yù)期的教學(xué)目標(biāo),我設(shè)計了三個教學(xué)環(huán)節(jié),下面,我就從這三個環(huán)節(jié)一一進行闡述。(一)創(chuàng)設(shè)情境、激發(fā)興趣
還有其他解法嗎?從中讓學(xué)生體會解一元一次方程就是根據(jù)是等式的性質(zhì)把方程變形成“x=a(a為已知數(shù))”的形式(將未知數(shù)的系數(shù)化為1),這也是解方程的基本思路。并引導(dǎo)學(xué)生回顧檢驗的方法,鼓勵他們養(yǎng)成檢驗的習(xí)慣)5、提出問題:我們觀察上面方程的變形過程,從中觀察變化的項的規(guī)律是什么?多媒體展示上面變形的過程,讓學(xué)生觀察在變形過程中,變化的項的變化規(guī)律,引出新知識.師提出問題:1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學(xué)生活動:分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學(xué)生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.
1.上述演示中,題目中的哪些項改變了在原方程中的位置?怎樣變的?2.改變的項有什么變化?學(xué)生活動:分學(xué)習(xí)小組討論,各組把討論的結(jié)果上報教師,最好分四組,這樣節(jié)省時間.師總結(jié)學(xué)生活動的結(jié)果:-2x改變符號后從等號的一邊移到另一邊。師歸納:像上面那樣,把方程中的某項改變符號后,從方程的一邊移到另一邊的變形叫做移項.這里應(yīng)注意移項要改變符號.(三)理解性質(zhì),應(yīng)用鞏固師提出問題:我們可以回過頭來,想一想剛解過的方程哪個變化過程可以叫做移項.學(xué)生活動:要求學(xué)生對課前解方程的變形能說出哪一過程是移項.對比練習(xí): 解方程:(1) X+4=6 (2) 3X=2X+1(3) 3-X=0 (4) 9X=8X-3學(xué)生活動:把學(xué)生分四組練習(xí)此題,一組、二組同學(xué)(1)(2)題用等式性質(zhì)解,(3)(4)題移項變形解;三、四組同學(xué)(1)(2)題用移項變形解,(3)(4)題用等式性質(zhì)解.師提出問題:用哪種方法解方程更簡便?解方程的步驟是什么?(答:移項法;移項、化簡、檢驗.)
目的:進一步理解追擊問題的實質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問題得到解決。環(huán)節(jié)三、運用鞏固活動內(nèi)容:育紅學(xué)校七年級學(xué)生步行郊外旅行,1班的學(xué)生組成前隊,步行速度為4千米/小時,3班的學(xué)生組成后隊,步行速度為6千米/小時,1班出發(fā)一個小時后,3班才出發(fā)。請根據(jù)以上的事實提出問題并嘗試回答。問題1:3班追上1班用了多長時間 ?問題2:3班追上1班時,他們離學(xué)校多遠?問題3:………………目的:給學(xué)生提供進一步鞏固建立方程模型的基本過程和方法的熟悉機會,讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會借線段圖分析行程問題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問題,同時還需注意檢驗方程解的合理性.實際活動效果:由于題目較簡單,所以學(xué)生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.
解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);
解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.
(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.
【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).
一、教學(xué)目標(biāo)1、讓學(xué)生懂得使用文明用語是學(xué)生應(yīng)有的美德。2、讓學(xué)生知道常用的文明用語,并學(xué)會運用。3、培養(yǎng)學(xué)生使用文明用語的良好習(xí)慣。