①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結:(1)畫位似圖形時,要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關鍵是畫出圖形中頂點的對應點.畫圖的方法大致有兩種:一是每對對應點都在位似中心的同側;二是每對對應點都在位似中心的兩側.(3)若沒有指定位似中心的位置,則畫圖時位似中心的取法有多種,對畫圖而言,以多邊形的一個頂點為位似中心時,畫圖最簡便.三、板書設計
觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內?對于函數(shù) ,兩支曲線又分別位于哪個象限內?怎樣區(qū)別這兩個函數(shù)的圖象。學生分四人小組全班探索。 三、課堂總結在進行函數(shù)的列表,描點作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當k>0時,它的圖像位于一、三象限內,當k<0時,它的圖像位于二、四象限內;(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設難點:用二次函數(shù)與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?
教學目標1、明確扇形統(tǒng)計圖的制作步驟,能夠根據(jù)相關數(shù)據(jù)較為準確地制作扇形統(tǒng)計圖.2、進一步理解扇形統(tǒng)計圖的特點,建立百分比大小和扇形圓心角大小之間初步的直觀敏感度.3、能夠實現(xiàn)不同統(tǒng)計圖數(shù)據(jù)間的合理轉換,再次體會幾種統(tǒng)計圖的不同特點,為合理選擇統(tǒng)計圖表示數(shù)據(jù)打下一定的基礎.4、通過實例,理解三種統(tǒng)計圖的特點,能根據(jù)具體問題選擇合適的統(tǒng)計圖清晰、有效地描述數(shù)據(jù).5、在統(tǒng)計活動的過程中,通過相互間的合作與交流,掌握畫統(tǒng)計圖和選擇統(tǒng)計圖的方法;經(jīng)歷數(shù)據(jù)的收集、整理和簡單分析、作出決策的統(tǒng)計活動過程,發(fā)展統(tǒng)計觀念.6、通過對現(xiàn)實生活中的數(shù)據(jù)分析,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,說出統(tǒng)計圖在現(xiàn)實生活中的應用,提高學習數(shù)學興趣.
(一)、創(chuàng)設情景,導入新課摸牌游戲:三位同學持三組牌,指定三位同學分別任意摸出一張,看誰能摸到紅牌,他們一定能摸到紅牌嗎?請手持牌的同學根據(jù)自已手中牌的情況,用語言描述一下抽出紅牌的情況。總結:在一定條件下,有些事情我們事先能肯定它一定發(fā)生,這些事情成為 事件。有些事情我們事先能肯定它一定不會發(fā)生,這些事情稱為 事件。 事件和 事件統(tǒng)稱為確定事件。許多事情我們事先無法肯定它會不會發(fā)生,這些事情稱為 事件,也稱為 事件。
(一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝1場得2分,負1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?方法一:(利用之前的知識,學生自己列出并求解)解:設剩X場,則負(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領學生一起列出方程組)解:設勝X場,負Y場。根據(jù):勝的場數(shù)+負的場數(shù)=總場數(shù) 勝場積分+負場積分=總積分得到:X+Y=10 2X+Y=16
2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達式;(2)根據(jù)表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結、提高。(結合板書小結)今天通過生活中的例子,探索學習了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應 的任意一對對應值的積來求得,只要k確定了,這個函數(shù)就確定了。
解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結:根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎上加一定利潤,其數(shù)量x與售價y的關系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關系式,并求出當數(shù)量是2.5千克時的售價.
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學生的數(shù)形結合思想,還有利于學生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應用本節(jié)課所學的知識以及所積累形成的學習經(jīng)驗和體驗解決問題的過程,即課堂鞏固訓練。在練習題的選擇上,由簡單到復雜。先是結合圖象獲取信息進行簡單的填空和選擇,此題屬于A組題型,檢驗學生的掌握情況;然后進行了一道B組題,關于“一次函數(shù)與一元一次方程的關系”知識點的靈活運用,進一步通過練習體會它們的關系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學習的分段函數(shù)練習,發(fā)散學生思維問題的訓練。讓學生體會分段函數(shù)的特點,并掌握求分段函數(shù)解析式的方法。
[互動2]師:請大家從上面的解題經(jīng)歷中,總結一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設函數(shù)表達式;第三步:根據(jù)表達式列等式,若是正比例函數(shù),只要找圖象上一個點的坐標就可以了;若是一次函數(shù),則需要找到圖象上兩個點的坐標,然后把點的坐標分別代入所設的解析式中,組成關于R、b的一個或兩個方程。第四步:求出R、b的值第五步:把R、b的值代回到表達式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數(shù)的表達式需要幾個條件?確定一次函數(shù)的表達式呢?要說明理由。生:確定正比例函數(shù)需要一個條件,而確定一次函數(shù)需要兩個條件。原因是正比例函數(shù)的表達式:y=Rx(R≠0)中,只有一個系數(shù)R,而一次函數(shù)的表達式y(tǒng)=Rx+b(R≠0)中,有兩個系數(shù)(待定)R和b。
計算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計算結果的裝置。顯示器因計算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個鍵上,都標明了這個鍵的功能。我們看鍵盤上標有的鍵,是開機鍵,在開始使用計算器時先要按一下這個鍵,以接通電源,計算器的電源一般用5號電池或鈕扣電池。再看鍵,是關機鍵,停止使用計算器時要按一下這個鍵,來切斷計算器的電源,是清除鍵,按一下這個鍵,計算器就清除當前顯示的數(shù)與符號。的功能是完成運算或執(zhí)行命令。是運算鍵,按一下這個鍵,計算器就執(zhí)行加法運算。
1、方程的定義1)像這種用等號“=”來表示相等關系的式子,叫等式。(老師給出定義。)2)請大家觀察左邊的這些式子,看看它們有什么共同的特征?(老師提出問題。)3)列方程時,要先設字母表示未知數(shù),然后根據(jù)問題中的相等關系,寫出含有未知數(shù)的等式叫做方程。(學生思考后,老師給出新學內容方程的定義。)4)判斷方程的兩個關鍵要素: ①有未知數(shù) ②是等式(老師提問,并給出。)
授課 日期 班級16高造價 課題: §10.1 計數(shù)原理 教學目的要求: 1.掌握分類計數(shù)原理與分步計數(shù)原理的概念和區(qū)別; 2.能利用兩個原理分析和解決一些簡單的應用問題; 3.通過對一些應用問題的分析,培養(yǎng)自己的歸納概括和邏輯判斷能力. 教學重點、難點: 兩個原理的概念與區(qū)別 授課方法: 任務驅動法 小組合作學習法 教學參考及教具(含多媒體教學設備): 《單招教學大綱》、課件 授課執(zhí)行情況及分析: 板書設計或授課提綱 §10.1 計數(shù)原理 1、加法原理 2、乘法原理 3、兩個原理的區(qū)別
課題序號6-3授課形式講授與練習課題名稱等比數(shù)列課時2教學 目標知識 目標理解并掌握等比數(shù)列的概念,掌握并能應用等比數(shù)列的通項公式及前n項和公式。能力 目標通過公式的推導和應用,使學生體會從特殊到一般,再從一般到特殊的思維規(guī)律,初步形成認識問題、分析問題、解決問題的一般思路和方法 。素質 目標通過對等比數(shù)列知識的學習,培養(yǎng)學生細心觀察、認真分析、正確總結的科學思維習慣和嚴謹?shù)膶W習態(tài)度。教學 重點等比數(shù)列的概念及通項公式、前n項和公式的推導過程及運用。教學 難點對等比數(shù)列的通項公式與求和公式變式運用。教學內容 調整無學生知識與 能力準備數(shù)列的概念課后拓展 練習 習題(P.21): 3,4.教學 反思 教研室 審核
系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結論,從而達到使學生既獲得知識又發(fā)展智能的目的.
The grammar of this unit is designed to review noun clauses. Sentences that use nouns in a sentence are called noun clauses. Nominal clauses can act as subject, object, predicate, appositive and other components in compound sentences. According to the above-mentioned different grammatical functions, nominal clauses are divided into subject clause, object clause, predicate clause and appositive clause. In this unit, we will review the three kinds of nominal clauses. Appositive clauses are not required to be mastered in the optional compulsory stage, so they are not involved.1. Guide the students to judge the compound sentences and determine the composition of the clauses in the sentence.2. Instruct students to try to learn grammar by generalizing grammar rules, controlling written practice, and semi-open oral output.3. Inspire the students to systematize the function and usage of noun clause1.Instruct students to try to learn grammar by generalizing grammar rules, controlling written practice, and semi-open oral output.2.Inspire the students to systematize the function and usage of noun clauseStep1: The teacher ask studetns to find out more nominal clauses from the reading passage and udnerline the nominal clauses.
教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.4 用樣本估計總體 *創(chuàng)設情境 興趣導入 【知識回顧】 初中我們曾經(jīng)學習過頻數(shù)分布圖和頻數(shù)分布表,利用它們可以清楚地看到數(shù)據(jù)分布在各個組內的個數(shù). 【知識鞏固】 例1 某工廠從去年全年生產(chǎn)某種零件的日產(chǎn)記錄(件)中隨機抽取30份,得到以下數(shù)據(jù): 346 345 347 357 349 352 341 345 358 350 354 344 346 342 345 358 348 345 346 357 350 345 352 349 346 356 351 355 352 348 列出頻率分布表. 解 分析樣本的數(shù)據(jù).其最大值是358,最小值是341,它們的差是358-341=17.取組距為3,確定分點,將數(shù)據(jù)分為6組. 列出頻數(shù)分布表 【小提示】 設定分點數(shù)值時需要考慮分點值不要與樣本數(shù)據(jù)重合. 分 組頻 數(shù) 累 計頻 數(shù)340.5~343.5┬2343.5~346.5正 正10346.5~349.5正5349.5~352.5正  ̄6352.5~355.5┬2355.5~358.5正5合 計3030 介紹 質疑 引領 分析 講解 說明 了解 觀察 思考 解答 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 各組內數(shù)據(jù)的個數(shù),叫做該組的頻數(shù).每組的頻數(shù)與全體數(shù)據(jù)的個數(shù)之比叫做該組的頻率. 計算上面頻數(shù)分布表中各組的頻率,得到頻率分布表如表10-8所示. 表10-8 分 組頻 數(shù)頻 率340.5~343.520.067343.5~346.5100.333346.5~349.550.167349.5~352.560.2352.5~355.520.067355.5~358.550.166合 計301.000 根據(jù)頻率分布表,可以畫出頻率分布直方圖(如圖10-4). 圖10-4 頻率分布直方圖的橫軸表示數(shù)據(jù)分組情況,以組距為單位;縱軸表示頻率與組距之比.因此,某一組距的頻率數(shù)值上等于對應矩形的面積. 【想一想】 各小矩形的面積之和應該等于1.為什么呢? 【新知識】 圖10-4顯示,日產(chǎn)量為344~346件的天數(shù)最多,其頻率等于該矩形的面積,即 . 根據(jù)樣本的數(shù)據(jù),可以推測,去年的生產(chǎn)這種零件情況:去年約有的天數(shù)日產(chǎn)量為344~346件. 頻率分布直方圖可以直觀地反映樣本數(shù)據(jù)的分布情況.由此可以推斷和估計總體中某事件發(fā)生的概率.樣本選擇得恰當,這種估計是比較可信的. 如上所述,用樣本的頻率分布估計總體的步驟為: (1) 選擇恰當?shù)某闃臃椒ǖ玫綐颖緮?shù)據(jù); (2) 計算數(shù)據(jù)最大值和最小值、確定組距和組數(shù),確定分點并列出頻率分布表; (3) 繪制頻率分布直方圖; (4) 觀察頻率分布表與頻率分布直方圖,根據(jù)樣本的頻率分布,估計總體中某事件發(fā)生的概率. 【軟件鏈接】 利用與教材配套的軟件(也可以使用其他軟件),可以方便的繪制樣本數(shù)據(jù)的頻率分布直方圖,如圖10-5所示. 圖10?5 講解 說明 引領 分析 仔細 分析 關鍵 語句 觀察 理解 記憶 帶領 學生 分析 25
The grammatical structure of this unit is predicative clause. Like object clause and subject clause, predicative clause is one of Nominal Clauses. The leading words of predicative clauses are that, what, how, what, where, as if, because, etc.The design of teaching activities aims to guide students to perceive the structural features of predicative clauses and think about their ideographic functions. Beyond that, students should be guided to use this grammar in the context apporpriately and flexibly.1. Enable the Ss to master the usage of the predicative clauses in this unit.2. Enable the Ss to use the predicative patterns flexibly.3. Train the Ss to apply some skills by doing the relevant exercises.1.Guide students to perceive the structural features of predicative clauses and think about their ideographic functions.2.Strengthen students' ability of using predicative clauses in context, but also cultivate their ability of text analysis and logical reasoning competence.Step1: Underline all the examples in the reading passage, where noun clauses are used as the predicative. Then state their meaning and functions.1) One theory was that bad air caused the disease.2) Another theory was that cholera was caused by an infection from germs in food or water.3) The truth was that the water from the Broad Street had been infected by waste.Sum up the rules of grammar:1. 以上黑體部分在句中作表語。2. 句1、2、3中的that在從句中不作成分,只起連接作用。 Step2: Review the basic components of predicative clauses1.Definition
Step 5: After learning the text, discuss with your peers about the following questions:1.John Snow believed Idea 2 was right. How did he finally prove it?2. Do you think John Snow would have solved this problem without the map?3. Cholera is a 19th century disease. What disease do you think is similar to cholera today?SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.keys:1. John Snow finally proved his idea because he found an outbreak that was clearly related to cholera, collected information and was able to tie cases outside the area to the polluted water.2. No. The map helped John Snow organize his ideas. He was able to identify those households that had had many deaths and check their water-drinking habits. He identified those houses that had had no deaths and surveyed their drinking habits. The evidence clearly pointed to the polluted water being the cause.3. SARS and Covid-19 because they are both deadly and fatally infectious, have an unknown cause and need serious public health care to solve them urgently.Step 6: Consolidate what you have learned by filling in the blanks:John Snow was a well-known _1___ in London in the _2__ century. He wanted to find the _3_____ of cholera in order to help people ___4_____ it. In 1854 when a cholera __5__ London, he began to gather information. He ___6__ on a map ___7___ all the dead people had lived and he found that many people who had ___8____ (drink) the dirty water from the __9____ died. So he decided that the polluted water ___10____ cholera. He suggested that the ___11__ of all water supplies should be _12______ and new methods of dealing with ____13___ water be found. Finally, “King Cholera” was __14_____.Keys: 1. doctor 2. 19th 3.cause 4.infected with 5.hit 6.marked 7.where 8.drunk 9.pump 10.carried 11.source 12.examined 13.polluted 14.defeatedHomework: Retell the text after class and preview its language points
This happens because the dish soap molecules have a strong negative charge, and the milk molecules have a strong positive charge. Like magnets, these molecules are attracted to each other, and so they appear to move around on the plate, taking the food coloring with them, making it look like the colors are quickly moving to escape from the soap.Listening text:? Judy: Oh, I'm so sorry that you were ill and couldn't come with us on our field trip. How are you feeling now? Better?? Bill: Much better, thanks. But how was it?? Judy: Wonderful! I especially liked an area of the museum called Light Games.it was really cool. They had a hall of mirrors where I could see myself reflected thousands of times!? Bill: A hall of mirrors can be a lot of fun. What else did they have?? Judy: Well, they had an experiment where we looked at a blue screen for a while, and then suddenly we could see tiny bright lights moving around on it. You'll never guess what those bright lights were!? Bill: Come on, tell me!? Judy: They were our own blood cells. For some reason, our eyes play tricks on us when we look at a blue screen, and we can see our own blood cells moving around like little lights! But there was another thing I liked better. I stood in front of a white light, and it cast different shadows of me in every color of the rainbow!? Bill: Oh, I wish I had been there. Tell me more!? Judy: Well, they had another area for sound. They had a giant piano keyboard that you could use your feet to play. But then, instead of playing the sounds of a piano, it played the voices of classical singers! Then they had a giant dish, and when you spoke into it, it reflected the sound back and made it louder. You could use it to speak in a whisper to someone 17 meters away.? Bill: It all sounds so cool. I wish I could have gone with you? Judy: I know, but we can go together this weekend. I'd love to go there again!? Bill: That sounds like a great idea!