(一)自學(xué)質(zhì)疑看書 解決下面兩個(gè)問題:1.下列圖中的兩個(gè)臺階哪個(gè)更陡?你是怎么判斷的? 答:圖 的臺階更陡,理由 2.除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?
活動6:通過隨堂小測的方式辨別圓的相關(guān)概念。目的:讓學(xué)生準(zhǔn)確地掌握直徑與弦,弧與半圓的關(guān)系,以及準(zhǔn)確理解等圓和等弧的概念?;顒?:讓學(xué)生分組討論“投圈游戲”,解決生活中的實(shí)際問題。目的:提高學(xué)生運(yùn)用所學(xué)圓的知識,解決實(shí)際問題的能力;也是為了鞏固圓的定義,同時(shí)再次激發(fā)學(xué)生的學(xué)習(xí)興趣?;顒?:給學(xué)生一個(gè)草坪情境,要求作出半徑為5m的圓,并說明原理。目的:提高學(xué)生的綜合運(yùn)用能力,并鞏固圓的定義。活動9:讓學(xué)生根據(jù)樹木的年輪的直徑和生長年齡,計(jì)算樹木每年的生長情況。目的:鞏固圓的知識?;顒?0:讓學(xué)生回顧本節(jié)課的重要內(nèi)容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關(guān)元素的概念,便于識記、理解和運(yùn)用。后者的目的是:第一題,檢測學(xué)生的動手能力和提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;第二題,檢測學(xué)生對本節(jié)課的重要內(nèi)容的理解情況;第三題,檢測學(xué)生的綜合運(yùn)用能力。以上是我對本節(jié)課內(nèi)容的理解和設(shè)計(jì)。
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
方法總結(jié):垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動點(diǎn),求OP的長度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長,此時(shí)OP為半徑的長;當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長.解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.
一、本章知識要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識的關(guān)鍵,而且也是本章知識的難點(diǎn)。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進(jìn)一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對邊與斜邊之比就確定比值為1:2。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請你判斷到C城后還能接收到信號嗎?請說明理由.
通過與學(xué)生講解切線長定義,讓學(xué)生在參與、合作中有一個(gè)猜想,再進(jìn)一步提出更有挑戰(zhàn)性的問題,能否用數(shù)學(xué)的方法加以證明。問題的解決,使學(xué)生既能解決新的問題,同時(shí)應(yīng)用到全等、切線的性質(zhì)等知識,同時(shí)三條輔助線中,兩條運(yùn)用切線性質(zhì)添加、一條構(gòu)造全等。證明后用較規(guī)范的語言歸納并不斷完善。(3) 應(yīng)用新知加深理解通過前面的學(xué)習(xí)學(xué)生們已經(jīng)對切線長定理有了較深刻的了解。為了加深學(xué)生對定理的認(rèn)識并培養(yǎng)學(xué)生的應(yīng)用意識學(xué)習(xí)例1、例2。例1讓學(xué)生自己獨(dú)立完成,加深對切線長定理的理解,老師進(jìn)行點(diǎn)評,對于例2,由師生共同分析完成,交進(jìn)行示范板書。(4) 鞏固與提高此訓(xùn)練題分為二個(gè)層次,目的在于鞏固新學(xué)的定理,并將所學(xué)的定理應(yīng)用到舊的知識體系中,使學(xué)生的知識體系得到補(bǔ)充和完善。(5) 歸納與小結(jié)通過小結(jié),使知識成為系統(tǒng)幫助學(xué)生全面理解,掌握所學(xué)的知識。
(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖2.問:此題目還可以 如何畫出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過點(diǎn)O分別作射線OA, OB, OC,OD;(3)分別在射線OA, OB, OC, OD的反向延長線上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過點(diǎn)O分別作 射線OA,OB,OC,OD;(3)分別在射線OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.
①分別連接OA,OB,OC,OD,OE;②分別在AO,BO,CO,DO,OE上截取OA′,OB′,OC′,OD′,OE′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=13;③順次連接A′B′,B′C′,C′D′,D′E′,E′A′.五邊形A′B′C′D′E′就是所求作的五邊形;(3)畫法如下:①分別連接AO,BO,CO,DO,EO,F(xiàn)O并延長;②分別在AO,BO,CO,DO,EO,F(xiàn)O的延長線上截取OA′,OB′,OC′,OD′,OE′,OF′,使OA′OA=OB′OB=OC′OC=OD′OD=OE′OE=OF′OF=12;③順次連接A′B′,B′C′,C′D′,D′E′,E′F′,F(xiàn)′A′.六邊形A′B′C′D′E′F′就是所求作的六邊形.方法總結(jié):(1)畫位似圖形時(shí),要注意相似比,即分清楚是已知原圖與新圖的相似比,還是新圖與原圖的相似比.(2)畫位似圖形的關(guān)鍵是畫出圖形中頂點(diǎn)的對應(yīng)點(diǎn).畫圖的方法大致有兩種:一是每對對應(yīng)點(diǎn)都在位似中心的同側(cè);二是每對對應(yīng)點(diǎn)都在位似中心的兩側(cè).(3)若沒有指定位似中心的位置,則畫圖時(shí)位似中心的取法有多種,對畫圖而言,以多邊形的一個(gè)頂點(diǎn)為位似中心時(shí),畫圖最簡便.三、板書設(shè)計(jì)
1、教學(xué)對象,九年級學(xué)生,實(shí)踐課 2、近幾年隨著體育加試的進(jìn)行,尤其是今年又把跳繩例如體育加試項(xiàng)目。九年級學(xué)生,通過前段時(shí)間的學(xué)習(xí),體能普遍較好,對跳繩有關(guān)的練習(xí)方式都有較強(qiáng)的興趣?! √K方面,基本的正搖跳,長繩的雙人搖跳、多人搖跳等技術(shù)動作有較好的基礎(chǔ)。大部分學(xué)生具備了向較高一層次難度發(fā)展的條件。比如:正搖跳,長繩的雙人搖跳、多人搖跳多跳等,這些技術(shù)動作學(xué)生都有較濃的興趣?! ?、另外中考體育加試的需要,學(xué)生學(xué)習(xí)跳繩的熱情、組織紀(jì)律、認(rèn)識能力、身體素質(zhì)相對其他年級有一定的優(yōu)勢。因此,我根據(jù)學(xué)生的實(shí)際情況,安排本節(jié)課的內(nèi)容,讓學(xué)生能更好的接受本次課的教學(xué)。另一方面,九年級學(xué)生正處自身發(fā)育的高峰期,靈敏,協(xié)調(diào)素質(zhì)的快速增長有可性強(qiáng)的特點(diǎn),跳繩恰好有此方面的鍛煉價(jià)值,這更增加提高了學(xué)生對跳繩的熱愛。同時(shí)也使我國民間體育得到更好的發(fā)展。
讓學(xué)生再用計(jì)算器計(jì)算,然后讓學(xué)生談?wù)動龅降膯栴}(計(jì)算器已經(jīng)不能把這些數(shù)顯示出來了)。最后讓學(xué)生根據(jù)上面的計(jì)算結(jié)果,找出規(guī)律,再直接寫出后四題的得數(shù),并組織學(xué)生交流,要求學(xué)生說說自己的思考過程及依據(jù),確認(rèn)發(fā)現(xiàn)的規(guī)律,讓學(xué)生進(jìn)一步體會計(jì)算器的作用:計(jì)算器還可以幫助我們探索規(guī)律。(設(shè)計(jì)意圖:設(shè)計(jì)不同層次的練習(xí),使學(xué)生體驗(yàn)計(jì)算器的有用性,提高學(xué)生解決問題的能力,培養(yǎng)學(xué)生辨證思維能力)四、最后進(jìn)行全課總結(jié)。整個(gè)活動,老師創(chuàng)設(shè)情境,啟發(fā)誘導(dǎo),設(shè)疑激趣,學(xué)生自主探索,動手操作,積極思考,討論交流,給學(xué)生提供了充分的數(shù)學(xué)活動機(jī)會,充分發(fā)揮了學(xué)生的主體作用,使學(xué)生不僅掌握了知識,發(fā)展了能力,同時(shí)又體驗(yàn)了數(shù)學(xué)問題的探索性與創(chuàng)造性,以及成功的喜悅,學(xué)生學(xué)得輕松,學(xué)得主動,學(xué)有創(chuàng)造,學(xué)有發(fā)展
2.為了表現(xiàn)出我國航母艦載戰(zhàn)斗機(jī)首架次成功著艦時(shí)驚心動魄的氣勢,表現(xiàn)出艦載機(jī)成功著艦后國人的喜悅,作者在語言上也下了一番功夫,請你結(jié)合課文做具體分析。明確:(1)運(yùn)用修辭手法,描繪著艦場面。“聲如千騎疾,氣卷萬山來?!边\(yùn)用對偶、夸張和比喻的修辭手法,增強(qiáng)文章氣勢,生動形象地表現(xiàn)了艦載機(jī)著艦時(shí)的浩大聲勢,具有感染力。(2)運(yùn)用細(xì)節(jié)描寫,生動形象地描繪出艦載機(jī)著艦的情形。如“震耳欲聾”“轟鳴”描繪出艦載機(jī)著艦時(shí)巨大的聲音,“眨眼之間”“剎那間”“疾如閃電”等詞描繪出艦載機(jī)著艦時(shí)的震撼場面?!袄卫蔚亍薄胺€(wěn)穩(wěn)地”生動地寫出了我國艦載機(jī)著艦技術(shù)的成熟和飛行員操作技能的嫻熟。“定格了一個(gè)象征勝利的巨大‘V’字”的特寫鏡頭,既是對當(dāng)時(shí)情景的生動再現(xiàn),也表現(xiàn)了作者對我國航母艦載戰(zhàn)斗機(jī)首架次成功著艦的喜悅和自豪。
“整數(shù)乘法運(yùn)算定律推廣到小數(shù)乘法”是在學(xué)生已經(jīng)掌握了小數(shù)乘法計(jì)算、整數(shù)乘法運(yùn)算定律的基礎(chǔ)上進(jìn)行教學(xué)的。教材通過幾組算式,讓學(xué)生計(jì)算出○的左右兩邊算式的得數(shù),找出它們的相等關(guān)系,總結(jié)出整數(shù)的運(yùn)算定律對小數(shù)同樣適用。學(xué)好這部分內(nèi)容,不僅培養(yǎng)學(xué)生的邏輯思維能力,而且以后能用本課所學(xué)的使一些小數(shù)的計(jì)算簡便,也為以后學(xué)習(xí)用不同方法解答應(yīng)用題起著積極的推動作用。2、教學(xué)目標(biāo)的確定:根據(jù)教材特點(diǎn),依據(jù)數(shù)學(xué)課程標(biāo)準(zhǔn)的要求及學(xué)生實(shí)際,我確定本課教學(xué)目標(biāo)如下:(1)知識能力目標(biāo):理解整數(shù)乘法運(yùn)算定律對于小數(shù)乘法用樣適用,并能應(yīng)用這些定律進(jìn)行一些簡便計(jì)算。(2)過程方法目標(biāo):引導(dǎo)學(xué)生在經(jīng)歷猜想、驗(yàn)證等數(shù)學(xué)活動中,發(fā)展學(xué)生的思維能力。(3)情感態(tài)度目標(biāo):通過小組合作學(xué)習(xí),培養(yǎng)學(xué)生進(jìn)行交流的能力與合作意識,體驗(yàn)到解決問題策略的多樣性。結(jié)合相關(guān)內(nèi)容,滲透“事物間是普遍聯(lián)系”的觀點(diǎn),對學(xué)生進(jìn)行辨證唯物主義的啟蒙教育。
2、晚自習(xí),教師不得講課,應(yīng)讓學(xué)生自習(xí),吃“自助餐”(以理科為主,高中文科除外)。作業(yè)做錯(cuò)的,應(yīng)更正作業(yè),教師給他批改,并作必要的輔導(dǎo);優(yōu)秀學(xué)生可看課外書籍、預(yù)習(xí)明天的功課或練習(xí)競賽一類的拔高題;必要時(shí),文科老師也可與個(gè)別學(xué)生接觸,作短時(shí)間的輔導(dǎo)?! ?、中午(至下午上課前),教師不得講課,可以讓學(xué)生更正上午做錯(cuò)的作業(yè),優(yōu)秀學(xué)生可以自由活動(可以進(jìn)閱覽室看書)。
(2)平均數(shù)受數(shù)據(jù)中的極端值(2個(gè)95)影響較大,使平均數(shù)在估計(jì)總體時(shí)可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計(jì)每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點(diǎn);(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個(gè)小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點(diǎn),教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識點(diǎn),并能夠靈活運(yùn)用。
問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進(jìn)行度量。根據(jù)上述數(shù)據(jù)計(jì)算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個(gè)值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠(yuǎn);相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠(yuǎn)。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。
可以通過下面的步驟計(jì)算一組n個(gè)數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個(gè)分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。
本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個(gè)要素來表示復(fù)數(shù)呢?如何表示?
本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來學(xué)習(xí)三角函數(shù)模型的簡單應(yīng)用,進(jìn)一步突出函數(shù)來源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)“建?!彼枷?從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實(shí)際問題.2.實(shí)際問題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問題中抽取基本的數(shù)學(xué)關(guān)系來建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。